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 Presented herein is an investigation on the vibrational response of 

fractional viscoelastic carbon nanotubes (CNTs) conveying fluid and 

resting on a fractional viscoelastic foundation. The CNTs are modeled 

according to the Euler-Bernoulli beam theory, and the foundation is 

considered to be Winkler-type. Also, to incorporate the nanoscale effect 

into the model, Eringen’s nonlocal elasticity is applied. Derivation of 

governing equation is done by a variational principle together with the 

Kelvin-Voigt viscoelastic model. Two solution approaches are 

developed for obtaining the time response of embedded fluid-conveying 

CNTs. The first approach is on the basis of Galerkin’s method, while the 

GDQM and FDM are used in the second approach. Comprehensive 

numerical results are given to study the effects of elastic foundation, 

fractional order, damping, fluid, nonlocal parameter, geometrical 

properties and viscoelasticity coefficient on the time responses of CNTs 

subject to different boundary conditions. 
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1. Introduction  

Carbon nanotubes (CNTs) since their discovery in 1991 by Iijima [1] have gained great importance 

in the scope of nanotechnology due to their wide applications [2-8]. CNTs possess excellent thermal, 

electrical and mechanical properties. In terms of mechanical characteristics, CNTs can resist large 

strains of up to 10% [9]. Moreover, they are quite flexible and can return to their original shape after 

bending and buckling [10]. 

The mechanical behaviors of nanostructures such as bending, buckling and vibration in both linear 

and nonlinear regimes have been extensively studied in the past two decades. Among the theoretical 

investigations, continuum models have received considerable popular acclaim. Such popularity may 

be mainly attributed to the computational efficiency of continuum models when they are compared  
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to their atomistic counterparts (e.g. MD simulations or DFT calculations). However, the classical 

continuum models are not appropriate to use at nanoscale since they are not able to capture the size-

dependent behavior of nanostructures. Accordingly, several size-dependent continuum theories 

have been developed up to now. 

The surface elasticity theory developed by Gurtin and Murdoch [11, 12] is a size-dependent theory 

with the capability of considering the surface stress effect. The concept of surface stress in solids 

was first proposed by Gibbs [13] in the beginning of 20th century. In nanostructures, the surface 

stress influence is of considerable significance because of large surface-to-volume ratio. There are 

numerous studies in the literature on the mechanical behaviors of nanoscale structures in which the 

surface stress effect has been taken into account [14-21]. 

The nonlocal theory initiated by Eringen [22, 23] is another size-dependent continuum theory 

applicable to the problems of small-scale systems. In this theory, the nonlocal effects are considered 

assuming that the stress at a point is a function of strains at all points in the body. A literature review 

shows that Eringen’s nonlocal theory has been widely applied to the problems of nanostructures 

including bending [24], buckling [25-29] and vibration [30-35].  

Nanotubes can be used in nanofluidic systems. In this regard, fluid storage, fluid transport and drug 

delivery can be mentioned as the related applications [36-39]. Hence, several research workers have 

analyzed the mechanical behaviors of nanotubes conveying fluid based on the size-dependent 

continuum models. For example, Zhang and Meguid [40] utilized the Gurtin-Murdoch theory to 

study the vibrational characteristics of simply-supported and clamped fluid-conveying nanotubes 

including the surface stress effect. Ansari et al. [41] investigated the nonlinear free vibrations and 

instability of fluid-conveying boron nitride nanotubes embedded in thermal environment. They 

developed a strain gradient Timoshenko beam model to incorporate the effects of transverse shear 

deformation, rotary inertia and small-scale into the formulation. The influence of longitudinal 

magnetic field on the transverse vibrations of magnetically sensitive CNTs conveying fluid was 

analyzed by Hosseini and Sadeghi-Goughari [42] based upon the nonlocal theory. Ansari and his 

associates [43, 44] studied the linear/nonlinear vibrations and instability of nanopipes conveying 

fluid using the Timoshenko beam theory. The surface stress effect was also considered according to 

the Gurtin-Murdoch theory. Chang [45] developed a nonlocal beam model in order to study 

instability and vibrations of fluid-filled CNTs. 

Analysis of viscoelastic nanosystems using the fractional calculus has recently attracted the 

attention of some researchers (e.g. [46-48]). Ansari et al. [47] developed a fractional nonlocal model 

for vibration analysis of viscoelastic CNTs based on the Timoshenko beam theory considering the 

effect of viscoelastic foundation. 

In the present paper, the free vibrational behavior of viscoelastic conveying fluid nanotubes 

considering the effect of elastic foundation is analyzed based on the fractional calculus. Eringen’s 

nonlocal theory is used for considering the small scale effect. Also, the Kelvin-Voigt model is 

employed for the viscoelastic behavior. The governing equation of vibrating CNTs conveying fluid 

is obtained using Hamilton’s principle and Euler-Bernoulli beam model. Two methods are presented 

for the solution of problem. In the first approach, the Galerkin method is applied for discretizing the 

spatial variable and reducing the governing PDE to an ordinary differential equation on the time 

domain. Then, the Simulink toolbar of MATLAB software is used to obtain the time response of 

CNT. In the second approach which is applicable for CNTs with arbitrary boundary conditions, the 
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GDQ technique is applied for discretizing the governing equation on spatial grids, and FDM is 

employed to discretize it on the time domain. In the numerical results, the impacts of important 

parameters such as fluid flow and elastic foundation on the vibrations of viscoelastic CNTs 

conveying fluid are illustrated.   

2. Governing Equation 

Fig. 1 illustrates the schematic view of the problem.  

 

Figure. 1. Schematic of the problem 

 

Based on the Bernoulli-Euler theory, the displacement field is expressed as 

𝑢𝑥 = 𝑢0(𝑡, 𝑥) + 𝑧
𝜕𝑤0
𝜕𝑥

, 𝑢𝑦 = 0, 𝑢𝑧 = 𝑤0(𝑡, 𝑥) (1) 

The strain components are given by 

𝜀𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕2𝑤0
𝜕𝑥2

,   𝜀𝑥𝑧 =
1

2

𝜕𝑤0
𝜕𝑥

 (2) 

The total strain energy of the CNT can be also written as 

𝛱𝑠 =
1

2
∫ {𝑁𝑥𝑥

𝜕𝑢0
𝜕𝑥

+ 𝑀𝑥𝑥

𝜕2𝑤0
𝜕𝑥

}𝑑𝑥
𝑥

 (3) 

in which 
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𝑁𝑥𝑥 = ∫𝜎𝑥𝑥𝑑𝐴
𝐴

, 𝑀𝑥𝑥 = ∫𝜎𝑥𝑥 𝑧𝑑𝐴
𝐴

 (4) 

The kinetic energy of the CNT is 

𝛱𝑇 =
1

2
∫ {𝑚 [(

𝜕𝑢0
𝜕𝑡

− 𝑧
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)

2

+ (
𝜕𝑤0
𝜕𝑡

)
2

]} 𝑑𝑥
𝑥

 (5) 

where 𝑚 is the mass per unit length of the CNT. 

Similarly, the kinetic energy of the fluid flow inside the CNT can be formulated as 

𝛱𝑓 =
1

2
∫ {𝑀(

𝜕𝑤0
𝜕𝑡

+𝑈
𝜕𝑤0
𝜕𝑥

)
2

+𝑀 (
𝜕𝑢0
𝜕𝑡

+ 𝑈)
2

}
𝑥

𝑑𝑥 (6) 

where 𝑀 and 𝑈 are the mass per unit length and the steady flow velocity of the internal moving 

fluid, respectively. 

Moreover, the work done by the transverse force 𝑞(𝑡, 𝑥) can be written as 

𝛱𝑤 = ∫𝑞(𝑡,𝑥)𝑤0𝑑𝑥
𝑥

 (7) 

Hamilton’s principle is now applied which is given as 

𝛿 ∫ (𝛱𝑇 + 𝛱𝑓 − 𝛱𝑠 + 𝛱𝑤)𝑑𝑡
𝑡2

𝑡1

= 0 (8) 

The governing equations are now derived as 

𝜕𝑁𝑥𝑥
𝜕𝑥

= (𝑀 +𝑚)
𝜕2𝑢0
𝜕𝑡2

 (9) 

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤

𝜕𝑥
) + 𝑞

= (𝑀+ 𝑚)
𝜕2𝑤0
𝜕𝑡2

+ (𝑀+ 𝑚)
𝜕2𝑤0
𝜕𝑡2

+2𝑀𝑈
𝜕2𝑤0
𝜕𝑥𝜕𝑡

+ 𝑀𝑈2
𝜕2𝑤0
𝜕𝑥2

 

(10) 

where 𝑁𝑥𝑥  and 𝑀𝑥𝑥  are resultant axial stress and bending moment, respectively. 

The force of the fractional viscoelastic Winkler foundation can be written as 

𝑞 = −𝑘𝑤0 − 𝑐
𝜕𝛽𝑤0
𝜕𝑡𝛽

 (11) 

in which  𝑘 and 𝑐 are Winkler’s spring and damping modulus, respectively. 

Based on Eringen’s nonlocal theory and Kelvin-Voigt model [22, 23, 49], the in-plane resultant  

force and resultant bending moment are expressed as 

𝑁𝑥𝑥 = (𝑒0𝑎)
2
𝜕2𝑁𝑥𝑥
𝜕𝑥2

+ 𝐸𝐴 (1 + 𝑔̂
∂𝛼

∂t𝛼
)
𝜕𝑢0
𝜕𝑥

,  (12) 

𝑀𝑥𝑥 = (𝑒0𝑎)
2
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+𝐸𝐼 (1 + 𝑔̂

∂𝛼

∂t𝛼
)
𝜕2𝑤0
𝜕𝑥2

, (13) 



 M. Faraji Oskouie and R. Ansari / Computational Sciences and Engineering 1(2) (2021) 123-137 127 

 

where 𝑒0𝑎 is the nonlocal parameter through which the size effects can be captured. By substituting 

Eqs. (12) and (13) into Eqs. (9) and (10), the explicit expressions of nonlocal in-plane resultant force 

and resultant bending moment can be achieved as 

𝑁𝑥𝑥 = 𝐸𝐴 (1 + 𝑔̂
∂𝛼

∂t𝛼
)
𝜕𝑢0
𝜕𝑥

−𝑁𝑇 + (𝑒0𝑎)
2(𝑚 +𝑀)

𝜕3𝑢0
𝜕𝑥𝜕𝑡2

,  (14) 

𝑀𝑥𝑥 = 𝐸𝐼 (1 + 𝑔̂
∂𝛼

∂t𝛼
)
𝜕2𝑤0
𝜕𝑥2

+ (𝑒0𝑎)
2 [(𝑀 + 𝑚)

𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

+ 2𝑀𝑈
𝜕4𝑤0
𝜕𝑥3𝜕𝑡

+ 𝑀𝑈2
𝜕4𝑤0
𝜕𝑥4

−
𝜕3

𝜕𝑥3
(𝑁𝑥𝑥

𝜕𝑤

𝜕𝑥
) −

𝜕2𝑞

𝜕𝑥2
], 

(15) 

By substituting Eqs. (14) and (15) into (10), the governing equation of the system is obtained as 

𝐸𝐼 (1 + 𝑔̂
∂𝛼

∂t𝛼
)
𝜕4𝑤0
𝜕𝑥4

+ {𝑀𝑈2 + 𝑃𝐴− 𝑇∗}
𝜕2𝑤0
𝜕𝑥2

+ 2𝑀𝑈
𝜕2𝑤0
𝜕𝑥𝜕𝑡

+ kw0 + c
𝜕𝛽𝑤0
𝜕𝑡𝛽

+ (𝑀+ 𝑚)
𝜕2𝑤0
𝜕𝑡2

− (𝑒0𝑎)
2 [{𝑀𝑈2 +𝑃𝐴 − 𝑇∗}

𝜕4𝑤0
𝜕𝑥4

+2𝑀𝑈
𝜕4𝑤0
𝜕𝑥3𝜕𝑡

+ +k
𝜕2𝑤0
𝜕𝑥2

+ c
𝜕2+𝛽𝑤0
𝜕𝑥2𝜕𝑡𝛽

+ (𝑀 +𝑚)
𝜕4𝑤0
𝜕𝑡2𝜕𝑥2

] = 0  

(16) 

where 𝑇∗ and 𝑃 are externally applied tension and pressurization influeneces, respectively. As 

reported in [50] for elastic tubes, regardless of the details of the wall–fluid interaction and the 

viscosity of the fluid, tension (𝑇∗) and pressure drop (𝑃𝐴) cancel each other out. Considering the 

following definitions 

𝑤 =
𝑤0
𝐿
, Ψ = 𝜓, 𝜉 =

𝑥

𝐿
 , 𝜏 =

𝑡

𝐿2
√

𝐸𝐼

𝑀 +𝑚
,

𝜇2 =
(𝑒0𝑎)

2

𝐿2
,     𝑔 =

𝑔̂

𝐿2
√

𝐸𝐼

𝑀 +𝑚
,    𝑉 = 𝑈𝐿√𝑀/𝐸𝐼, 𝑁𝑇̅̅ ̅̅ =

𝑁𝑇
𝐸𝐴

,

𝑅 =
𝑀

𝑀 +𝑚
, 𝐶 =

𝑐𝐿

√𝐸𝐴(𝑚1 + 𝑚1𝑓)

, 𝐾 =
𝑘𝐿4

𝐸𝐴
, 𝑃 =

𝜅𝑠𝐺

𝐸
 

 

(17) 

the dimensionless governing equation is derived as 

(1 + 𝑔
𝜕𝛼

𝜕𝜏𝛼
)
𝜕4w

𝜕𝜉4
− V2

𝜕2w

𝜕𝜉2
+Kw + C

𝜕𝛽𝑤

𝜕𝜏𝛽
+2√𝑅𝑉

𝜕2w

𝜕𝜉𝜕𝜏
+
𝜕2w

𝜕𝜏2

− 𝜇2 (𝐾
𝜕2w

𝜕𝜉2
+ C

𝜕2+𝛽𝑤

𝜕𝜉2𝜕𝜏𝛽
−𝑉2

𝜕4w

𝜕𝜉4
+ 2√𝑅𝑉

𝜕4w

𝜕𝜉3𝜕𝜏
+

𝜕4w

𝜕𝜏2𝜕𝜉2
)

= 0  

(18) 
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3. Solution Approaches 

3.1. First Approach 

In this approach, first, the Galerkin method is used for discretizing the spatial variable and reducing 

the governing PDE to an ODE on the time domain. For the simply supported-simply supported 

boundary conditions (SS) one can write 

𝑤(𝜁, 𝑇) =∑𝜑𝑛(𝑇)sin(𝑛𝜋𝜁)

∞

𝑛=1

 (19) 

in which 𝜑𝑛(𝑇) indicates the unknown time-dependent coefficient. Also, sin(𝑛𝜋𝜁) stands for the 

modal functions of linear vibrations corresponding to the vibrations of CNT with SS end conditions. 

By the first modal function (𝑛 = 1), the following time-dependent ODE is obtained 

(1 + 𝜋2𝜇2)𝜑̈1 +𝑉
2𝜋2(1+ 𝜇2𝜋2)𝜑1 +𝜋

4(𝜑1 +𝑔𝜑1
(𝛼)) + 𝐾(1 + 𝜇2𝜋2)𝜑1

+ 𝐶(1 + 𝜇2𝜋2)𝜑1
(𝛽) = 0 

(20) 

that can be solved considering initial displacement and velocity [51]. 

  

3.2. Second Approach 

In the second approach, which is numerical, CNTs with various end conditions can be analyzed. 

The GDQ is employed for discretizing on spatial grids, and FDM is used for discretizing on the time 

domain.  

 

3.2.1. GDQ 

In this method one has 

𝜕𝑟𝑓(𝑥)

𝜕𝑥𝑟
|
𝑥=𝑥𝑖

=∑𝒲𝑖𝑗

(𝑟)
𝑓(𝑥𝑗)

𝑁

𝑗=1

 
(21) 

in which [52]   

𝒲𝑖𝑗

(𝑟)
= 

{
 
 
 
 

 
 
 
 

𝐈𝑥,     where 𝐈𝑥  is a 𝑁 × 𝑁 identity matrix, 𝑟 = 0

𝒫(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝒫(𝑥𝑗)
,where  𝒫(𝑥𝑖) = ∏ (𝑥𝑖−𝑥𝑗)

𝑁

𝑗=1; 𝑗≠𝑖

, 𝑖 ≠ 𝑗 and 𝑖, 𝑗 =   1, … , 𝑁 𝑎𝑛𝑑  𝑟 = 1

𝑟 [𝒲𝑖𝑗

(1)
𝒲𝑖𝑖

(𝑟−1)
−
𝒲𝑖𝑗

(𝑟−1)

𝑥𝑖−𝑥𝑗
], 𝑖 ≠ 𝑗 and 𝑖 , 𝑗 =   1, … , 𝑁 𝑎𝑛𝑑 𝑟 = 2,3, …𝑁 −1

− ∑ 𝒲𝑖𝑗
(𝑟)

𝑁

𝑗=1; 𝑗≠𝑖

, 𝑖 = 𝑗 and 𝑖, 𝑗 =   1,… ,𝑁 𝑎𝑛𝑑  𝑟 = 1,2,3, …𝑁− 1

   

       

(22) 

By introducing the following column vector 
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𝐅 = [𝑓(𝑥1) 𝑓(𝑥2) ⋯ 𝑓(𝑥𝑁)]
T (23) 

Eq. (21) can be rewritten as 

𝑑𝑟

𝑑𝑥𝑟
𝐅 = 𝐃𝑥

(𝑟)
𝐅 

(24) 

where 𝐃𝑥
(𝑟)
= [𝒲𝑖𝑗

(𝑟)
] is the operational matrix of differentiation, 𝑖, 𝑗 = 1, … , 𝑁 and 𝑟 =

0,1,2, … , 𝑁 − 1. 

 

3.2.2. FDM 

The fractional derivative of a function is written as [53, 54] 

 
1

Γ(1−𝛼)
∫

𝑤′(𝑡𝑘+1−𝜏)

𝜏 𝛼
𝑑𝜏

𝑡𝑘+1
0

=
𝜏𝛼

Γ(2−𝛼)
∑ 𝑏𝑗

𝛼[𝑤(𝑡𝑘+1−𝑗) −𝑤(𝑡𝑘−𝑗)]
𝑘
𝑗=0  

𝑏𝑗
𝛼 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼 , 𝑗 = 0,1,2, . . , 𝑛 (25) 

where 0 < 𝛼 < 1 denotes the order of fractional derivative.  

 

3.2.3. Discretization 

The grid is selected as 

𝜁𝑖 =
1

2
(1 − cos

𝑖 − 1

𝑛 − 1
𝜋) , 𝑖 = 1,2, 3, … , 𝑛    

(26) 

Also,  

𝜏𝑖 = 𝑗
𝑇

𝑚 +1
, 𝑗 = 0, 2,3, …  , 𝑚    

(27) 

By introducing the following matrix 

𝐖 = [

𝑤10 𝑤12 ⋯ 𝑤1𝑛
𝑤20 ⋱ ⋱ 𝑤2𝑛
⋮ ⋱ ⋱ ⋮

𝑤𝑚0 𝑤𝑚2 ⋯ 𝑤𝑚𝑛

] , 𝑖 = 1 . . 𝑚, 𝑗 = 0 . . 𝑛    

(28) 

in which 𝑤𝑖𝑗 = 𝑤(𝑥𝑖 , 𝑡𝑗). Based on GDQ and FDM: 

 

 [𝐈𝜁 −𝜇
2𝐃ζ

2] 𝐖𝐃t
2T− 𝑉2(𝐃ζ

2𝐖)(𝐈𝑡
T + 𝑔̂𝐃t

αT) +𝐾[𝐈𝜁 − 𝜇
2𝐃ζ

2]𝐖𝐈𝑡
T + 𝐶[𝐈𝜁 −

𝜇2𝐃ζ
2]𝐖𝐃t

βT +2√𝑅𝑉[𝐈𝜁 − 𝜇
2𝐃ζ

2]𝐖𝐃t
1T − 𝑔̂ (

1

Γ(1−𝛼)𝒕𝛼
)⊗ (−V2𝐃ζ

2𝐖𝟎)
𝑇
−

𝐶 (
1

Γ(1−𝛽)𝒕𝛽
) ⊗ (𝐈𝜁𝐖0− 𝜇

2𝐃ζ
2𝐖0)

𝑇
= 0 (29) 

In Eq. (29), 𝐖𝟎 indicates the initial values of 𝑊; 𝒕 is the vector of time; 𝐈 is the identity matrix 

and 𝐃t
α , 𝐃t

β
 are the fractional derivative operators of order 𝛼 and 𝛽.  
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The mode shape for the vibration of elastic nanotube is considered as the initial displacement. 

Furthermore, the initial velocity is taken to be zero. By applying the discretized conditions to the 

governing equation, one can arrive at an algebraic set of equations. 

 

4. Numerical Results 

The dimensionless maximum amplitude is plotted against dimensionless time for CNTs under three 

sets of end conditions including C-C, C-SS and SS-SS conditions. The following parameters are 

also used [55]: 

𝐷𝑜 = 100 𝑛𝑚, ℎ = 10 𝑛𝑚, 𝜌𝐶𝑁𝑇 = 2.3 
𝑔

𝑐𝑚3
, 𝐸 = 1 𝑇𝑃𝑎, 𝜌𝑓 = 1 

𝑔

𝑐𝑚3
,

𝜈 = 0.2 

First, a comparison is made in Fig. 2 between the results obtained from the first and second 

solution methods presented in Section 3. In this figure, the time responses of CNT with SS-SS 

boundary conditions are shown for different values of fractional derivative orders 𝛼 and 𝛽. The 

agreement observed between predictions by two approaches can confirm the validity of the results 

of present study. The influences of fractional derivative orders on the time response of CNT can be 

also seen in Fig. 2 which will be discussed in the following two figures. From now on, the second 

approach, that is able to model CNTs with different boundary conditions, is employed to generate 

the results.  

 

Figure. 2. Comparison between the results of two solution approaches for simply-supported CNT (𝑲 = 𝟏 𝑮𝑷𝒂, 𝑽 =

𝟏𝟎𝟎 
𝒎

𝒔
,

𝑳

𝑫𝒐
= 𝟐𝟓, 𝒄 = 𝟓, 𝝁 = 𝟎. 𝟎𝟓, 𝒈 = 𝟎. 𝟎𝟐) 

In Fig. 3, the influence of fractional derivative order 𝛼, which is related to the structural 

damping, on the time response of CNTs with SS-SS, C-C and C-SS boundary conditions is 

investigated. One can find that by increasing 𝛼, the frequency of system does not change 

considerably, but the damping of amplitude is intensified. Fig. 4 also indicates the effect of fractional 

derivative order 𝛽, which is associated with the viscoelastic foundation. It is observed that the effect 

of 𝛽 is similar to that of 𝛼. Moreover, Figs. 3 and 4 reveal that the behavior of CNT is dependent 

on the selecetd boundary conditions.  
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Figure. 3. Effect of 𝜶 on the time response of nanotube for a) C-C b) C-SS and c) SS-SS boundary conditions (𝑲 =

𝟏 𝑮𝑷𝒂, 𝑽 = 𝟑𝟎𝟎 
𝒎

𝒔
,
𝑳

𝑫𝒐
= 𝟐𝟓, 𝒄 = 𝟏𝟎, 𝝁 = 𝟎. 𝟏, 𝒈 = 𝟎. 𝟎𝟐, 𝜷 = 𝟎. 𝟓) 

 

Figure. 4. Effect of 𝜷 on the time response of nanotube for a) C-C b) C-SS and c) SS-SS boundary conditions (𝑲 =

𝟏 𝑮𝑷𝒂, 𝑽 = 𝟑𝟎𝟎 
𝒎

𝒔
,
𝑳

𝑫𝒐
= 𝟐𝟓, 𝒄 = 𝟏𝟎, 𝝁 = 𝟎. 𝟏, 𝒈 = 𝟎. 𝟎𝟐, 𝜶 = 𝟎. 𝟓) 

Fig. 5 illustrates the time responses of nanotubes for different values of foundation’s spring 

coefficient. The results show that the frequency gets larger as this coefficient increases. In fact, the 

increase of foundation’s spring coefficient leads to the increase of system’s stiffness.  
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Figure. 5. Effect of foundation’s spring coefficient on the time response of nanotube for a) C-C b) C-SS and c) SS-SS 

boundary conditions (𝑽 = 𝟑𝟎𝟎 
𝒎

𝒔
,
𝑳

𝑫𝒐
= 𝟐𝟓, 𝒄 = 𝟏𝟎, 𝝁 = 𝟎.𝟏, 𝒈 = 𝟎. 𝟎𝟐, 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟐) 

The influence of fluid flow velocity on the time response of CNTs is highlighted in Fig. 6. 

According to this figure, the frequency of system decreases with increasing fluid flow velocity. At 

higher values of fluid flow velocity, the frequency decreases to a greater extent.  

 

Figure. 6. Effect of fluid flow velocity on the time response of nanotube for a) C-C b) C-SS and c) SS-SS boundary 

conditions (𝑲 = 𝟏 𝑮𝑷𝒂, 𝝁 = 𝟎. 𝟏,
𝑳

𝑫𝒐
= 𝟐𝟓, 𝒄 = 𝟏𝟎, 𝝁 = 𝟎. 𝟏, 𝒈 = 𝟎. 𝟎𝟐, 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟐) 
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The effect of nonlocal parameter or small scale influence can be analyzed by Fig. 7. It is seen 

that as the dimensionless nonlocal parameter becomes greater, the frequency decreases and the 

amplitude is damped to a greater extent.  

 

Figure. 7. Effect of nonlocal parameter on the time response of nanotube for a) C-C b) C-SS and c) SS-SS boundary 

conditions (𝑲 = 𝟏 𝑮𝑷𝒂, 𝝁 = 𝟎. 𝟏,
𝑳

𝑫𝒐
= 𝟐𝟓, 𝒄 = 𝟏𝟎, 𝑽 = 𝟖𝟎𝟎 

𝒎

𝒔
, 𝒈 = 𝟎. 𝟎𝟐, 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟐) 

Fig. 8 indicates the time responses of nanotubes with various 𝐿 𝐷𝑜⁄ . It is observed that as 𝐿 𝐷𝑜⁄  

increases, the damping of system is intensified and its frequency diminishes.    

 

Figure. 8. Effect 𝑳 𝑫𝒐
⁄  on the time response of nanotube for a) C-C b) C-SS and c) SS-SS boundary conditions (𝑲 =

𝟏 𝑮𝑷𝒂, 𝝁 = 𝟎. 𝟏,𝝁 = 𝟎. 𝟏, 𝒄 = 𝟏𝟎, 𝑽 = 𝟖𝟎𝟎 
𝒎

𝒔
, 𝒈 = 𝟎. 𝟎𝟐, 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟐) 
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Fig. 9 depicts the effect of foundation’s damping coefficient. As expected, increasing this 

coefficient leads to more damping. Furthermore, the frequency increases with the increase of 

foundation’s damping coefficient.   

 

Figure. 9. Effect of foundation’s damping coefficient on the time response of nanotube for a) C-C b) C-SS and c) SS-

SS boundary conditions (𝑲 = 𝟏 𝑮𝑷𝒂, 𝝁 = 𝟎. 𝟏, 𝑳/𝑫𝒐 = 𝟐𝟓, 𝑽 = 𝟖𝟎𝟎 
𝒎

𝒔
, 𝒈 = 𝟎. 𝟎𝟐, 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟐) 

Finally, the influence of dimensionless viscoelasticity coefficient is studied in Fig. 10. This 

figure shows that the frequency of nanotube increases as the viscoelasticity coefficient gets larger. 
 

 
Figure. 10. Effect of viscoelasticity coefficient on the time response of nanotube for a) C-C b) C-SS and c) SS-SS 

boundary conditions (𝑲 = 𝟏 𝑮𝑷𝒂, 𝝁 = 𝟎. 𝟏,
𝑳

𝑫𝒐
= 𝟐𝟓, 𝑽 = 𝟖𝟎𝟎

𝒎

𝒔
, 𝒄 = 𝟏𝟎, 𝜶 = 𝟎. 𝟐, 𝜷 = 𝟎. 𝟐) 
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5. Conclusion 

 

Within the framework of fractional calculus, the size-dependent vibrational behavior of viscoelastic 

conveying fluid carbon nanotubes considering viscoelastic foundation was investigated in this 

article. The Bernoulli-Euler beam theory, Eringen’s nonlocal theory, Kelvin-Voigt model and 

Hamilton’s principle were employed to derive the governing equation which was then solved using 

two solution approaches. The first approach was based upon the Galerkin method, and in the second 

approach that was numerical, the GDQ and FD schemes were used. The agreement between the two 

approaches appears to be sufficient to confirm the validity of the results. The results revealed that 

as the fractional derivative orders increase, the frequency of system does not change significantly, 

but the damping of amplitude is intensified. Also, it was concluded that the frequency increases 

when foundation’s spring and damping coefficients become larger. Another finding was that the 

frequency of system decreases with increasing fluid flow velocity. Moreover, by increasing the fluid 

flow velocity, the damping of amplitude is intensified. It was also observed that the small scale 

effect in the nonlocal continuum model make CNTs more flexible.  

 

.  
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