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 The developments of approximate analytical solutions to nonlinear 

differential equations have been achieved through the use of various 

approximate analytical and semi-analytical methods. These methods 

provide different analytical expressions which give difference values 

for the same input data and variables. However, under some certain 

conditions, the methods provide similar analytical expressions, thereby 

give the same values for the same input data and variables. Therefore, 

in this work, the conditions of similar analytical solutions by homotopy 

perturbation, differential transformation and Taylor series methods for 

linear and nonlinear differential equations are investigated. From the 

analysis, it is established that if some specific values or functions are 

assigned to the auxiliary parameters in the homotopy perturbation 

method, the approximate analytical solutions provided by homotopy 

perturbation method is entirely similar to the approximate analytical 

solutions given by differential transformation and Taylor series 

methods. Also, it is found that the results of Taylor series method when 

expansion is at the center, is exactly the same to the results of 

homotopy perturbation and differential transformation methods. It is 

hoped that this work will great assist and enhance the understanding of 

mathematical solutions providers and enthusiasts as it provides better 

insight into finding analytical solutions to linear and nonlinear 

differential equations. 
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1. Introduction  

Mathematical modeling of real-life problems results in nonlinear differential and integral equations 

in which their exact analytical solutions are very difficult to develop.  However, the developments 

of approximate analytical solutions to the nonlinear differential and integral equations have been 

achieved through the use of various approximate analytical and semi-analytical methods [1-19]. In 

these pool of the approximate analytical and semi-analytical methods, one major concern is the 
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approximate analytical solutions given by homotopy perturbation, differential transformation, and 

Taylor series expansion methods. As with the other approximate analytical and semi-analytical 

methods, these three methods of interests solve linear and nonlinear differential equations without 

requiring linearization, discretization, restrictive assumptions, or small perturbation parameter.   

Homotopy perturbation method (HPM) is an approximate analytical method which is relative simple 

and provides acceptable analytical results with convenient convergence and stability. Although, it 

is a type of perturbation methods, it does not require small perturbation parameter like the traditional 

perturbation methods (regular and singular perturbation methods) to provide approximate analytical 

solutions to the nonlinear problems. It should be stated that when it comes to finding solutions to 

boundary-value and initial-boundary value problems, homotopy perturbation method is a total 

analytical method (non-semi-analytical method or non-analytic-numeric method) as it does not 

necessarily require any numerical scheme to find the value(s) or function(s) that satisfy the terminal 

boundary condition(s). The versatility of this method has made it to be widely applied to various 

science and engineering problems (19-34]. 

Taylor series expansion method (TSM) is one of the earliest total analytic methods for finding 

approximate analytical solutions to differential equations. This method provides an advantage of 

making is a differentiable approximate solution to be obtained, which can be replaced into  

differential equations and the initial or boundary conditions.  However, Taylor series expansion 

method is not frequently applied because it requires more function evaluations than well-known 

classical algorithms and the overelaborate tasks of calculations of the higher-order derivatives 

involve in finding approximate solutions of differential equations. Some of the applications of the 

method can be found in [35-50].  

Differential transform method (DTM) is a type of non-perturbation semi-analytical method that is 

based on the Taylor series expansion method. It is taken as an extended Taylor series expansion 

method as it allows easy generalization of the Taylor series expansion method to various derivation 

procedures. As with the other methods, DTM can also be directly applied to differential equations 

without requiring linearization, discretization, restrictive assumptions or perturbation [51-68]. It is 

capable of greatly reducing the size of computational work and time while still accurately providing 

the series solution with fast convergence rate. The method minimizes the computational difficulties 

of the Taylor series in that the components are easily determined. The method solves nonlinear 

problems in a like manner as linear problems, thus overcoming the deficiency of linearization or 

perturbation. With the aid of differential transformation method, solving differential equations is 

sufficiently done with simple calculations whereas the Taylor series method suffers from certain 

computational difficulties.  

The HPM, TSEM and DTM provide different analytical expressions which give difference results 

for the same input data and variables. However, under some certain conditions, the methods provide 

similar analytical expressions, thereby give the same values for the same input data and variables. 

To the best of the author’s knowledge, these conditions have not been well established in literature. 

Therefore, in this work, the conditions of similar analytical solutions for the three approximate 

analytical methods for linear and nonlinear differential equations are investigated and presented. 

Various examples are provided for the approximate analytical solutions to linear and nonlinear 

ordinary and partial differential equations to establish the conditions. 

 

2. Principles of the Approximate Analytical Methods of Solutions 

In this section, the basic definitions and the principles of the homotopy perturbation, Taylor series 

expansion and differential transformation methods are presented. 

    

    2.1 The basic idea of homotopy perturbation method 

In order to establish the basic idea behind homotopy perturbation method, consider a system of 

nonlinear differential equations given as 
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    0, ,A u f r r                   (1) 

     with the boundary conditions 

    

, 0, ,
u

B u r


 
  

 
                (2) 

where A is a general differential operator, B is a boundary operator which is a function of the 

dependent variable and its derivatives,  f r  a known analytical function and  is the boundary of 

the domain   

The operator A can be divided into two parts, which are L and N, where L is a linear operator, N is 

a non-linear operator. Eq. (1) can be therefore rewritten as follows 

          0.L u N u f r                  (3) 

   By the homotopy technique, a homotopy    , : 0,1U r p R   can be constructed, which satisfies 

               , 1 0, 0,1 ,H U p p L U L U p A U f r p                     (4) 

or  

           , 0.H U p L U L U pL U p N U f r                              (5) 

In the above Eqs. (4) and (5),   0,1p  is an embedding parameter, ou is an initial approximation of 

equation of Eq.(1), which satisfies the boundary conditions. 

Also, from Eqs. (4) and Eq. (5), we will have 

     ,0 0,oH U L U L U                 (6) 

or 

     ,0 0.H U A U f r                 (7) 

The changing process of p from zero to unity is just that of  ,U r p from  ou r
 
to  u r . This is referred 

to homotopy in topology. Using the embedding parameter p as a small parameter, the solution of Eqs. 

(4) and Eq. (5) can be assumed to be written as a power series in p as given in Eq. (8) 

 
2

1 2 ...oU U pU p U                  (8) 

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best result. 

Therefore, setting 1p  , results in the approximation solution of Eq. (9) 

1 2
1

lim ...o
p

u U U U U


                   (9) 

Therefore 



164 M. G. Sobamowo/ Computational Sciences and Engineering 1(2) (2021) 161-187 164 

 

1 2 ...ou U U U                                                                                                                             (10) 

The basic idea expressed above is a combination of homotopy and perturbation method. Hence, the 

method is called homotopy perturbation method (HPM), which has eliminated the limitations of the 

traditional perturbation methods. On the other hand, this technique can have full advantages of the 

traditional perturbation techniques.  

2.2 The basic principle of Taylor series method  

The basic principle of Taylor series method for solving differential equation is as follows: 

Given a differential equation  

 

( , , , ,... ) 0nf x y y y y   .                                                                                                                     (11) 

 

From the nth –order Taylor series of a smooth function about the point ox x , the series solution of the 

differential equation is given by  

       
2 31 1 1

( ) ( ) ( ) ( ) ( ) ... ( )
2! 3! !

nn

o o o o o o o o oy x y x y x x x y x x x y x x x y x x x
n

                      (12) 

 

using the above series in Equ. (12), each term in the differential equation as presented in Eq. (11) can 

be found.  The various developed series expressions are introduced into the given differential equation 

to evaluate the coefficients ( ), ( ), ( ), ( ),..., ( )n

o o o o oy x y x y x y x y x   . The values or analytical expressions 

of ( ), ( ), ( ), ( ),..., ( )n

o o o o oy x y x y x y x y x    are substituted into the series solution in Eq. (12) to establish 

the Taylor series expansion solution of the differential equation. 

 

 

2.3 The basic definitions and operational properties of differential transformation method 

The basic definitions of the method are stated that if )(tu  is analytic in the domain T, then it will be 

differentiated continuously with respect to time t. 

 

( )
( , )

k

k

d u t
t k

dt
          for         all Tt                                     (13)  

 

for 
itt  , then ( , ) ( , )it k t k   , where k belongs to the set of non-negative integers, denoted as the k-

domain. Therefore Eq. (13) can be rewritten as  

 

( )
( ) ( , )

i

k

i k

t t

d u t
U k t k

dt




 
   

 
                         (14) 

 

Where
kU  is called the spectrum of )(tu  at 

itt   

 

 If )(tu  can be expressed by Taylor’s series, the )(tu  can be represented as  

 

 
( ) ( )

!

k

i

k

t t
u t U k

k

  
  

  
                                                                                                     (15)                                                                                      
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where Equ. (15) is called the inverse of )(kU  using the symbol ‘D’ denoting the differential 

transformation process and combining (14) and (15), it is obtained that 

 

 
  1

0

( ) ( ) ( )
!

k

i

k

t t
u t U k D U k

k






 
  

  
                                                                               (16) 

 

2.2.1 Operational properties of differential transformation method 

If )()( tvandtu  are two independent functions with time (t) where )(kU  and )(kV  are the transformed 

function corresponding to )(tu  and )(tv , then it can be proved from the fundamental mathematics 

operations performed by differential transformation that 

 

i. If ),()()( tvtutz      then )()()( kVkUk   

 

ii. If ),()( tutz    then )()( kUkZ   

 

iii. If ,
)(

)(
dt

tdu
tz    then  )1()1()(  kUkk  

 

iv. If ),()()( tvtutz   then 



K

i

lkUlVt
0

)()()(   

 

v. If )()( tutz m , then 


 
K

I

m lkUlUt
0

1 )()()(  

 

vi. If ),()()( tvtutz nn   then     
















k

l

lk

j

l

j

jlkUjVjlUjVtZ
0 00

)()()()()(  

 

vii. If ),()()( tvtutz     then 



k

l

lkUlVlk
0

)()1()1()(    

 

viii. If ( ) mz t t , then 
1

( )
0

k m
t

k m


  


 

 

 

3. Presentation of approximate analytical solutions to different differential equations 

It has been stated in the previous sections that HPM, TSM and DTM provide different analytical 

expressions for a given differential equation. However, under some certain conditions, the methods 

give similar analytical expressions for the given differential equation. In order to establish these 

conditions, the three series methods are applied separately to some set of linear and nonlinear 

ordinary differential equations as presented under this section. 

 

3.1 Solutions of linear differential equations 

Example 1: Apply homotopy perturbation method, Taylor series and differential transformation 

methods to solve the following second-order differential equation  
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12 2 0, (0) , (0)oy xy y y a y a                                                                                                                       (17) 

 

Using homotopy perturbation method, we have the following 

 

( ) , ( ) 2 2 , ( ) 0L y y N y xy y f x      ,                                                                                                 (18) 

 

From the definition of HPM in Eq. (5), we have  

         0 0, 2 2 0.H y p y y p y p xy y                                                                                 (19)  

Since 0 1 0 0y a y    , therefore, Eq. (19) becomes,  

     , 2 2 0.H y p y p xy y                                                                                                                           (20) 

 

The solution of Eq. (17) can be assumed to be written as a power series in p as given in Eq. (20) 

 
2 3

0 1 2 3 ...y y py p y p y                                                                                                                 (21) 

 

Substitute the assume solution in Eq. (21) into Eq. (20), we have  

 

 
 

 

2 3

0 1 2 32 3

0 1 2 3
2 3

0 1 2 3

2 ...
, ... 0.

2 ...

x y py p y p y
H y p y py p y p y p

y py p y p y

        
                 
 

                        (22) 

 

  2 3 2 3 4

0 1 2 3 0 1 2 3

2 3 4

0 1 2 3

, ... 2 2 2 2 ...

2 2 2 2 ... 0.

H y p y py p y p y xpy xp y xp y xp y

py p y p y p y   

                

     
                                 (23) 

 

Also, for the initial conditions, we have  

 
2 3

0 1 2 3(0) (0) (0) (0) ... ,oy py p y p y a          
2 3

0 1 2 3 1(0) (0) (0) (0) ...y py p y p y a                     (24) 

 

Arrange the equation and the initial conditions according to the power of the embedding parameter p, 

we have 

 
0

0 0: 0, (0) ,op y y a     0 1(0)y a                                                                                                                   (25) 

 
1

1 0 0 1 1: 2 2 0, (0) 0, (0) 0p y xy y y y                                                                                                        (26) 

 
2

2 1 1 2 2: 2 2 0, (0) 0, (0) 0p y xy y y y                                                                                                        (27) 

 
3

3 2 2 3 3: 2 2 0, (0) 0, (0) 0p y xy y y y                                                                                  (28) 

. 

. 

. 

Solving the above Eqs. (25), (26), (27) and (28), we have  
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0 1 ,oy a a x                                                                                                                                        (29) 

 

 2 3

1 0 1

1
,

3
y a x a x





                                                                                                                     (30) 

 

    4 5

2 0 1

2 1 3
,

6 30
y a x a x

     
                                                                                           (31) 

 

. 

. 

. 

After substitution of solutions in Eqs. (29), (30) and (31) into the assumed solution in Eq. (21), we have,  

      2 3 4 5 2

1 0 1 0 1

1 2 1 3
...

3 6 30
oy a a x a x a x p a x a x p

    


      
          

   

                 (32) 

From the definition of HPM,  

      2 3 4 5 2

1 0 1 0 1
1

1 2 1 3
lim ...

3 6 30
o

p
y a a x a x a x p a x a x p

    




       
            

    

      (33) 

Therefore 

      2 3 4 5

1 0 1 0 1

1 2 1 3
...

3 6 30
oy a a x a x a x a x a x

    


   
                                           (34)                                                                                                          

 

Applying Taylor series method to Example 1 i.e. Eq. (17), we have the Taylor series solution about the 

center point 0x  of the linear differential equation in Eq. (17) as  

 

2 3 4 51 1 1 1
( ) (0) (0) (0) (0) (0) (0) ...

2! 3! 4! 5!

iv vy x y xy x y x y x y x y                                                             (35) 

Therefore,  

2 3 41 1 1
( ) (0) (0) (0) (0) (0) ...

2 6 24

iv vy x y xy x y x y x y                                                                                     (36) 

and 

2 31 1
( ) (0) (0) (0) (0) ...

2 6

iv vy x y xy x y x y                                                                                   (37) 

After substitution of the initial conditions 1(0) , (0)oy a y a   into Eq. (91) and (92), we have  

2 3 4 5

0 1

1 1 1 1
( ) (0) (0) (0) (0) ...

2! 3! 4! 5!

iv vy x a a x x y x y x y x y                                                                       (38) 

2 3 4

1

1 1 1
( ) (0) (0) (0) (0) ...

2 6 24

iv vy x a xy x y x y x y                                                                                   (39) 



168 M. G. Sobamowo/ Computational Sciences and Engineering 1(2) (2021) 161-187 168 

 

On substituting Eqs. (37), (38) and (39) into the given differential equation, one arrives at 

 

2 3 2 3 4

1

2 3 4 5

0 1

1 1 1 1 1
(0) (0) (0) (0) ... 2 (0) (0) (0) (0) ...

2 6 2 6 24

1 1 1 1
2 (0) (0) (0) (0) ... 0,

2! 3! 4! 5!

iv v iv v

iv v

y xy x y x y x a xy x y x y x y

a a x x y x y x y x y

   
               

   

 
         

 

     (40) 

Collection of like terms in Eq. (40) provides, 

    2

0 1 1

3

2 1
(0) 2 2 (0) 2 (0) 2 (0) (0)

2! 2

1 2 1
(0) (0) (0) ...

3! 2! 3!

iv

v

y a a y a x y y y x

y y y x

  
 

          
 

 
     

 

                                     (41) 

Which provides 

 0(0) 2 0y a    

 1 12 (0) 2 0a y a     

2 1
(0) 2 (0) (0) 0

2! 2!

ivy y y
 

    
 

                                                                                                    (42) 

1 2 2
(0) (0) (0) 0

3! 2! 3!

vy y y
 

    
 

 

. 

. 

. 

From Eq. (42), one can see that  

0(0) 2y a    

 1(0) 2 1y a      

 0(0) 4 2ivy a                                                                                                                                (43) 

  1(0) 4 3 1vy a      

Substitute the solution in Eq. (38) into Eq. (44), we have  

      2 3 4 5

0 1 0 1 0 1

1 2 3 1
( ) ...

3 6 30
y x a a x a x a x a x a x

    


   
                                          (44) 

Now, we apply differential transformation method. The differential transform of equation is given as   

          1 2 2 2 2 0k k Y k k Y k Y k                                                                                                       (45) 

From the given initial condition, one can write that 
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0(0)Y a        1(1)Y a                                                                                                                                      (46) 

From Eq. (101), for k=0, 1, 2, 3,…, it can be stated that 

 
 

 
 

 
  1 1 1

0

1 2 1 3
(2) , 3 , 4 , 5 ,

3 6 30

a a a
Y a Y Y Y

    


    
                          (47)                                             

  Following the definition of differential transformation method, we have  

2 3 4 5(0) (1) (2) (3) (4) (5) ...y Y xY x Y x Y x Y x Y                                                                                      (48) 

Substituting the solutions in Eq. Eq. (47) into (48), we have  

      2 3 4 5

1 0 1 0 1

1 2 1 3
...

3 6 30
oy a a x a x a x a x a x

    


   
                                                 (49) 

 

Again, one arrives at the same analytical solution using the three methods. However, in the homotopy 

perturbation method, if the auxiliary parameters are chosen such that  

( ) 2 2 , ( ) 0, ( ) 0L y y xy y N y f x      ,  or ( ) 2 , ( ) 2 , ( ) 0L y y y N y xy f x                                           

 

The analytical solution of the homotopy perturbation method will not the same as the similar analytical 

solutions of Taylor series and differential transformation methods given in Eqs. (34) and (49). 

 

 

Example 2: Apply homotopy perturbation method, Taylor series expansion and differential 

transformation methods to solve the following partial differential heat equation  

 
2( ,0) 4 ,t xxu u u x x                                                                                                              (50) 

As previously presented, we apply homotopy perturbation method, we have the following 

 

 2 2

0 0( ) , ( ) , ( , ) 0, 4 ( ) 4 0t xxL u u N u u f x t u x L u x
t


       


,                                                (51) 

Therefore, from the definition of HPM, we have  

    2, ( , , ) ( , , ) 0, ( ,0, ) 4 ,t xxH u p u x t p p u x t p u x p x                                                                (52) 

As done previously, the solution of Eq. (106) can be assumed to be written as a power series in p as 

 
2 3

0 1 2 3( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ...u x t p u x t p pu x t p p u x t p p u x t p                                                                (53) 

 

Substitute the assume solution in Eq. (53) into Eq. (52), we have  

 

 
2 22 2

2 3 2 30 3 0 31 2 1 2

2 2 2 2
, ... ... 0

u u u uu u u u
H u p p p p p p p p

t t t t x x x x

         
              

           

                         

                                                                                                                                                     (54) 

Also, for the initial condition 
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2 3 2

0 1 2 3( ,0, ) ( ,0, ) ( ,0, ) ( ,0, ) ( ,0, ) ... 4u x p u x p pu x p p u x p p u x p x                                     (55) 

 

Arrange the equation and the initial conditions according to the power of the embedding parameter p, 

we have 

 

0 20: 0, ( ,0) 4 ,
u

p u x x
t


 


                                                                                                                (56) 

 
2

1 01
12

: 0, ( ,0) 0,
uu

p u x
t x


  

 
                                                                                                         (57) 

 
2

2 2 1
22

: 0, ( ,0) 0,
u u

p u x
t x

 
  

 
                                                                                                    (58) 

 
2

3 3 2
32

: 0, ( ,0) 0,
u u

p u x
t x

 
  

 
                                                                                                    (59) 

 
2

4 34
42

: 0, ( ,0) 0,
uu

p u x
t x


  

 
                                                                                                    (60) 

 

 

. 

. 

. 

 
Solving the above Eqs. (56), (57), (58), (59) and (60), we have  

 
2

0 4 ,u x    
1 8 ,u t   2 0,u     3 0,u    4 0,u   . . ., 0,nu                                                                  (61)                                                                                                                     

 

Substitute Eq. (53) into Eqs. (61), gives,  

2( , ) 4 8 ,u x t x tp                                                                                                                                (62) 

From the definition of HPM,  

 2

1
( , ) lim 4 8

p
u x t x tp


                                                                                                                       (63) 

Therefore 

2( , ) 4 8u x t x t                                                                                                                                   (64)  

In order to apply Taylor series method to find the analytical solution to Example 2 i.e. Eq. (50), it is 

stated that the Taylor series expansion for two independent variables is given as  

          
2 21

( , ) ( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) ...
2!

x y xx xy yyf x y f a b x a f a b y b f a b x a f a b x a y b f a b y b f a b             
 

     

                                                                                                                                                   (64) 
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Therefore, if we write the Taylor’s series expansion for ( , )u x t  about the point 0x  and t=0, we have  

2 2

3 2 2 3

4 3 2 2 3 4

1
( , ) (0,0) (0,0) (0,0) (0,0) 2 (0,0) (0,0)

2!

1
(0,0) 3 (0,0) 3 (0,0) (0,0)

3!

1
(0,0) 4 (0,0) 6 (0,0) 4 (0,0)

4!

x t xx xt tt

xxx xxt xtt ttt

xxxx xxxt xxtt xttt tt

u x t u xu tu x u xtu t u

x u x tu xt u t u

x u x tu x t u xt u t u

       

      

    

5 4 3 2 2 3 4 5

(0,0)

1
(0,0) 5 (0,0) 10 (0,0) 10 (0,0) 5 (0,0) (0,0) ...

5!

tt

xxxxx xxxxt xxxtt xxttt xtttt tttttx u x tu x t u x t u xt u t u

   

        

           (65)                                                  

From the given equation,  

( , ) ( , )t xxu x t u x t                                                                                                                             (66) 

From Eq. (66), it be stated that 

(0,0) (0,0)t xxu u                                                                                                                             (67)  

Given that 

2( ,0) 4 (0,0) 0, (0,0) 0, (0,0) 8x xxu x x u u u                                                                          (68) 

On substituting Eq. (68) into Eq. (67), we have  

(0,0) 8tu                                                                                                                                                                     (69) 

Also, differentiating Eq. (66) with respect to “t”, we have 

( , ) ( , )tt xxtu x t u x t                                                                                                                              (70) 

Then,  

(0,0) (0,0)tt xxtu u                                                                                                                             (71) 

One can say that 

(0,0) 0, (0,0) 0, (0,0) 0, (0,0) 0, (0,0) 0x xx xxt tu u u u u                                                             (72) 

On substituting Eq. (72) into Eq. (71), we have  

(0,0) 0ttu                                                                                                                                                                     (73) 

Again, on differentiating Eq. (66) with respect to “x”, one has 

( , ) ( , )xt xxxu x t u x t                                                                                                                            (74) 

Then,  

(0,0) (0,0)xt xxxu u                                                                                                                           (75) 

It can be stated that 
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(0,0) 0, (0,0) 2, (0,0) 8, (0,0) 0 (0,0) 0,x xx xxx xxtu u u u u                                                  (76) 

On substituting Eq. (76) into Eq. (75), we have  

(0,0) 0xtu                                                                                                                                                                     (77)                                                                                                                                                                    

Similarly 

(0,0) 0xxtu  , (0,0) 0xttu  , (0,0) 0, (0,0) 0xttt xttttu u  . In the same way, the other coefficients in the 

Eq. (65) are also found. 

Therefore, we have  

(0,0) 0, (0,0) 0, (0,0) 8, (0,0) 8, (0,0) 0,

(0,0) 0, (0,0) 0, (0,0) 0, (0,0) 0, (0,0) 0

(0,0) 0, (0,0) 0, (0,0) 0, (0,0) 0, (0,0) 0

(0,0) 0, (0,0) 0

x t xx xt

tt xxx xxt xtt ttt

xxxx xxxt xxtt xttt tttt

xxxxx xxxxt

u u u u u

u u u u u

u u u u u

u u

    

    

    

  , (0,0) 0 (0,0) 0, (0,0) 0, (0,0) 0xxxtt xxttt xtttt tttttu u u u   

                                      (78) 

 

Substitute the coefficients in Eq. (78) into Eqs. (65), gives,  

2( , ) 4 8u x t x t                                                                                                                                (79)  

Using differential transformation method, the differential transform of equation is given as   

        1 , 1 1 2 2,h U k h k k U k h                                                                                         (80) 

Which gives  

 
    

 

1 2 2,
, 1

1

k k U k h
U k h

h

  
 


                                                                                              (81)                        

The initial condition is transformed as                                                                                                

1 2,
( ,0) 4

0 2

k
U k

k


 


 

(2,0) 4, (0,0) (1,0) (3,0) (4,0) (5,0) ... ( ,0) 0U U U U U U U N                                               (82) 

 

From Eq. (81),  

(0,1) 8, (0,1) 0, (0,2) 0, (0,3) 0, (0,4) 0... (0, ) 0

(1,1) 0, (1,2) 0, (1,3) 0, (1,4) 0... (1, ) 0

U U U U U U N

U U U U U N

       

      
                         (83) 

The other coefficients are zero. 

  From the definition of differential transformation method, one can write that  

2

2 2 2 2 2

( , ) (0,0) (1,0) (0,1) (1,1) (2,0)

(0,2) (2,1) (1,2) (2,2) ...

u x y U xU tU xtU x U

t U x tU xt U x t U

    

    
                                                           (84)                                                                      
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Substitute the coefficients in Eq. (83) into Eq. (84), gives,  

2( , ) 4 8u x t x t                                                                                                                                 (85)  

It can also be seen that the same analytical solution is given using the three methods. However, in the 

homotopy perturbation method, if the auxiliary parameters are chosen such that  

( ) , ( ) 0, ( , ) 0,t xxL u u u N u f x t    ,                                                

 

The analytical solution of the homotopy perturbation method will not the same as the similar analytical 

solutions of Taylor series and differential transformation methods given in Eqs. (79) and (85). 

 

 

3.2 Solutions of Nonlinear differential equations 
 

Example 3: Solve the following nonlinear differential equation using homotopy perturbation, Taylor 

series expansion and differential transformation methods.  

 
2 0, (0) 1y y y                                                                                                                               (80) 

 

Using homotopy perturbation method, we have the following 

2( ) , ( ) , ( ) 0L y y N y y f x   ,                                                                                                 (81) 

    By the homotopy technique, one can construct homotopy which satisfies  

           , 1 ( ) 0.H y p p L y L y p L y N y f x                                                                (82) 

After substituting of Eq. (81) into Eq. (82) and, one arrives at 

    2

0, (1 ) 0.H y p p y y p y y                                                                                                  (83) 

Since 0 01 0y y   , therefore, Eq. (83) becomes,  

  2, 0.H y p y p y                                                                                                                           (84) 

 

The solution of Eq. (80) can be assumed to be written as a power series in p as given in Eq. (85) 

 
2 3

0 1 2 3...y y py p y p y                                                                                                                (85) 

 

Substitute the assume solution in Eq. (86) into Eq. (84), we have  

 

   
2

2 3 2 3

0 1 2 3 0 1 2 3, ... ... 0.H y p y py p y p y p y py p y p y                                                        (86) 

 

Arrange the equation according to the power of the embedding parameter p, we have 

 
0

0 0: 0, (0) 1p y y                                                                                                                      (87) 
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1 2

1 0 1: 0, (0) 0p y y y                                                                                                                               (88) 

 
2

2 0 1 2: 2 0, (0) 0p y y y y                                                                                                                              (89) 

 
3

3 0 2 1 1 3: 2 0, (0) 0p y y y y y y                                                                                                (90) 

. 

. 

. 

 

The solutions the above Eqs. (87), (88), (89) and (90) are 

 

0 1,y    1 ,y x   
2

2 ,y x  
3

3 ,y x  ….                                                                                               (91) 

 

After substitution of solutions in Eq. (91) into Eq. (85), the result is  

2 2 3 31 ...y px p x p x                                                                                                                   (92) 

From the definition of homotopy perturbation method, we have 

 2 2 3 3 2 3

1
lim 1 ... 1 ...
p

y px p x p x x x x


                                (93) 

Therefore 

2 31 ...y x x x                                                                                                                                              (94) 

The above solution can be extended to a generalization as  

 

2 3 1
1 ... ( 1) ... , 1

1

n ny x x x x x
x

         


                                                                                           (95) 

 

Using Taylor series expansion method, suppose the series solution about the point 0x  of the linear 

differential equation in Eq. (85) is given as  

 

2 31 1
( ) (0) (0) (0) (0) ...

2! 3!
y x y xy x y x y                                                                                       (96) 

It is given that  

(0) 1y                                                                                                                                                  (97) 

Then from the given differential equation, one gets 

2(0) (0) 0,y y                                                                                                                                             (98) 

Given that  

(0) 1 (0) 1,y y                                                                                                                                    (99) 

Differentiating the given differential equation, we have  
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2 0,y yy                                                                                                                                                  (100) 

Which gives 

(0) 2 (0) (0) 0,y y y                                                                                                                                             (101) 

Then, the result is 

(0) 2 (0) (0) 2(1)( 1) 2,y y y                                                                                                      (102) 

Differentiation of Eq. (100) with respect to x, gives 

22 2( ) 0,y yy y                                                                                                                                                    (103)  

Which provides 

2(0) 2(1)(2) 2(( 1)) 6,y                                                                                                            (104) 

Therefore 

(0) 1, (0) 1, (0) 2, (0) 6,y y y y                                                                                                             (105) 

On substituting the solution of Eq. (105) into Eq. (96), one arrives as 

2 31 ...y x x x                                                                                                                                              (106) 

The above solution can be extended to a generalization as  

 

2 3 1
1 ... ( 1) ... , 1

1

n ny x x x x x
x

         


                                                                                           (107) 

Application of differential transformation method, the differential transform of equation is given as   

       
0

1 1 0
k

l

k Y k Y l Y k l


                                                                                                                 (108) 

Which can be written as 

 
   

 
01

1

k

l

Y l Y k l

Y k
k



 

 



                                                                                                                 (109) 

From the given initial condition, we have 

(0) 1Y                                                                                                                                              (110) 

From Eq. (174), for k=0, 1, 2, 3,…, one has 

(1) 1, (2) 1, (3) 1,Y Y Y                                                                                                           (111) 

From the definition of differential transformation method, one can write that  
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2 3(0) (1) (2) (3) ...y Y xY x Y x Y                                                                                                        (112) 

On substituting the solutions in Eq. (110) and (111) into Eq. (172), one arrives as 

2 31 ...y x x x                                                                                                                                              (113) 

The above solution can be extended to a generalization as  

 

2 3 1
1 ... ( 1) ... , 1

1

n ny x x x x x
x

         


                                                                                           (114) 

 

Example 4: Apply homotopy perturbation method, Taylor series expansion and differential 

transformation methods to solve the following partial differential Burger’s equation  

 

( ,0) 2 ,t x xxu uu u u x x                                                                                                    (115) 

Using homotopy perturbation method, we have the following 

 

   0 0( ) , ( ) , ( , ) 0, 2 ( ) 2 0t x xxL u u N u uu u f x t u x L u x
t


       


,                                    (116) 

Therefore, from the definition of HPM, we have  

   , ( , , ) ( , , ) ( , , ) ( , , ) 0, ( ,0, ) 2 ,t x xxH u p u x t p p u x t p u x t p u x t p u x p x                                   (117) 

As done previously, the solution of Eq. (115) can be assumed to be written as a power series in p as 

 
2 3

0 1 2 3( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ...u x t p u x t p pu x t p p u x t p p u x t p                                                                (118) 

 

Substitute the assumed solution in Eq. (118) into Eq. (117), we have  

 

 

 2 3 2 30 31 2
0 1 2 3

2 30 31 2

2 22 2
2 30 31 2

2 2 2 2

... ...

, ... 0

...

u uu u
u pu p u p u p p p

x x x xu uu u
H u p p p p p

t t t t u uu u
p p p

x x x x

     
         

                          
            

                         

                                                                                                                                                   (119) 

Also, for the initial condition 

 
2 3

0 1 2 3( ,0, ) ( ,0, ) ( ,0, ) ( ,0, ) ( ,0, ) ... 2u x p u x p pu x p p u x p p u x p x                                     (120) 

 

Arrange the equation and the initial condition according to the power of the embedding parameter p, we 

have 

 

0 0: 0, ( ,0) 2 ,
u

p u x x
t


 


                                                                                                                (121) 

 
2

1 0 01
0 12

: 0, ( ,0) 0,
u uu

p u u x
t x x

 
   

  
                                                                                                        (122) 
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2
2 02 1 1

0 1 22
: 0, ( ,0) 0,

uu u u
p u u u x

t x x x

  
    

   
                                                                                             (123) 

 
2

3 3 02 1 2
0 2 1 32

: 0, ( ,0) 0,
u uu u u

p u u u u x
t x x x x

   
     

    
                                                                       (124) 

 

. 

. 

. 

 
Solving the above Eqs. (121), (122), (123) and (124), we have  

 

0 2 ,u x    
1 4 ,u xt    

2

2 8 ,u xt    
3

3 16 ,u xt    
4

4 32 ,u xt  . . .,   11 2 ,
n n n

nu xt                     (125)                                                                                                                     

 

Substitute the solutions in Eqs. (125) into Eqs. (118), gives,  

 2 2 3 3 4 4 1( , ) 2 4 8 16 32 ... 1 2 ,
n n n nu x t x xtp xt p xt p xt p xt p                                                       (126) 

From the definition of HPM,  

  2 2 3 3 4 4 1

1
( , ) lim 2 4 8 16 32 ... 1 2 ...

n n n n

p
u x t x xtp xt p xt p xt p xt p


                                        (127) 

Therefore 

 2 3 4 1( , ) 2 4 8 16 32 ... 1 2
n n nu x t x xt xt xt xt xt                                                                          (128)  

  The above series is an expansion of   
2

1 2

x

t
    

  2 3 4 1 2
( , ) 2 4 8 16 32 ... 1 2

1 2

n n n x
u x t x xt xt xt xt xt

t

        


                                                           (129)  

Therefore,  

2
( , )

1 2

x
u x t

t



                                                                                                                                   (130) 

In order to apply Taylor series to solution to Example 4 i.e. Eq. (115), we know the Taylor series 

expansion for two independent variables is given as  

          
2 21

( , ) ( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) ...
2!

x y xx xy yyf x y f a b x a f a b y b f a b x a f a b x a y b f a b y b f a b             
 

     

                                                                                                                                                       (121) 

Therefore, if we write the Taylor’s series expansion for ( , )u x t  about the point 0x  and t=0, we have  
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2 2

3 2 2 3

4 3 2 2 3 4

1
( , ) (0,0) (0,0) (0,0) (0,0) 2 (0,0) (0,0)

2!

1
(0,0) 3 (0,0) 3 (0,0) (0,0)

3!

1
(0,0) 4 (0,0) 6 (0,0) 4 (0,0)

4!

x t xx xt tt

xxx xxt xtt ttt

xxxx xxxt xxtt xttt tt

u x t u xu tu x u xtu t u

x u x tu xt u t u

x u x tu x t u xt u t u

       

      

    

5 4 3 2 2 3 4 5

(0,0)

1
(0,0) 5 (0,0) 10 (0,0) 10 (0,0) 5 (0,0) (0,0) ...

5!

tt

xxxxx xxxxt xxxtt xxttt xtttt tttttx u x tu x t u x t u xt u t u

   

        

        (122)                                                  

From the given equation,  

( , ) ( , ) ( , ) ( , )t x xxu x t u x t u x t u x t                                                                                                           (123) 

From Eq. (123), it be stated that 

(0,0) (0,0) (0,0) (0,0)t x xxu u u u                                                                                                                          (124)  

Given that 

( ,0) 2u x x  

Then 

(0,0) 0, (0,0) 2, (0,0) 0x xxu u u                                                                                            (125) 

On substituting Eq. (125) into Eq. (124), we have  

(0,0) 0tu                                                                                                                                                                     (126) 

Also, differentiating Eq. (123) with respect to “t”, we have 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )tt t x xt xxtu x t u x t u x t u x t u x t u x t                                                                            (127) 

Then,  

(0,0) (0,0) (0,0) (0,0) ( , ) (0,0)tt t x xt xxtu u u u u x t u                                                                                        (128) 

One can say that 

(0,0) 0, (0,0) 2, (0,0) 0, (0,0) 0, (0,0) 0x xx xxt tu u u u u                                                             (129) 

On substituting Eq. (129) into Eq. (128), we have  

(0,0) 0ttu                                                                                                                                                                     (130) 

Again, differentiating Eq. (123) with respect to “x”, we have 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )xt x x xx xxxu x t u x t u x t u x t u x t u x t                                                                            (213) 

Then,  

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0)xt x x xx xxxu u u u u u                                                                                        (124) 

It can be stated that 
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(0,0) 0, (0,0) 2, (0,0) 0, (0,0) 0 (0,0) 0,x xx xxx xxtu u u u u                                                  (125) 

On substituting Eq. (125) into Eq. (124), we have  

(0,0) 4xtu                                                                                                                                                                      (126) 

Now, differentiating Eq. (123) with respect to “x”, we have 

( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )xxt xx x x xx xxx xxxxu x t u x t u x t u x t u x t u x t u x t u x t                                                   (127) 

Then 

(0,0) 2 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)xxt xx x x xx xxx xxxxu u u u u u u u                                               (128) 

It was found that 

(0,0) 0, (0,0) 2, (0,0) 0, (0,0) 0 (0,0) 0, (0,0) 0x xx xxx xxt xxxxu u u u u u                              (129)  

On substituting Eq. (129) into Eq. (128), we have  

(0,0) 0xxtu                                                                                                                                                                     (130) 

Now, differentiating Eq. (123) with respect to “x”, we have 

( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )xtt x xt t xx xxt xxxtu x t u x t u x t u x t u x t u x t u x t u x t                                           (131) 

Then 

(0,0) 2 (0,0) (0,0) (0,0) ( , ) (0,0) (0,0) (0,0)xtt xt x t xx xxt xxxtu u u u u x t u u u                                               (132) 

It was found that 

(0,0) 0, (0,0) 2, (0,0) 4, (0,0) 0 (0,0) 0, (0,0) 0, (0,0) 0x xt xx xxt xxxt tu u u u u u u                (133)                     

On substituting the solutions in Eq. (133) into Eq. (132), we have  

(0,0) 16xttu                                                                                                                                                                     (134) 

Similarly 

(0,0) 96, (0,0) 768xttt xttttu u   . In the same way, the other coefficients in the Eq. (122) are also found. 

Therefore, we have  

(0,0) 0, (0,0) 0, (0,0) 2, (0,0) 0, (0,0) 4,

(0,0) 0, (0,0) 0, (0,0) 0, (0,0) 16, (0,0) 0

(0,0) 0, (0,0) 0, (0,0) 0, (0,0) 96, (0,0) 0

(0,0) 0, (0,

x t xx xt

tt xxx xxt xtt ttt

xxxx xxxt xxtt xttt tttt

xxxxx xxxxt

u u u u u

u u u u u

u u u u u

u u

     

    

     

 0) 0, (0,0) 0 (0,0) 0, (0,0) 768, (0,0) 0xxxtt xxttt xtttt tttttu u u u    

                                  (135) 

 

Substitute the coefficients in Eq. (135) into Eqs. (122), gives,  

 2 3 4 1( , ) 2 4 8 16 32 ... 1 2
n n nu x t x xt xt xt xt xt                                                                          (136)  
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 As done previously,   

  2 3 4 1 2
( , ) 2 4 8 16 32 ... 1 2

1 2

n n n x
u x t x xt xt xt xt xt

t

        


                                                            (137)  

Therefore,  

2
( , )

1 2

x
u x t

t



                                                                                                                                  (138) 

Using differential transformation method, the differential transform of equation is given as   

             
0 0

1 , 1 , 1 1, 1 2 2,
k h

l p

h U k h U l h p k l U k l p k k U k h
 

                        (139) 

Which gives  

 
         

 
0 0

1 2 2, , 1 1,

, 1
1

k h

l p

k k U k h U l h p k l U k l p

U k h
h

 

        

 



                    (140)                        

The initial condition is transformed as                                                                                                

1 1,
( ,0) 2

0 1

k
U k

k


 


                                                                                                                   (141) 

(1,0) 2, (0,0) (2,0) (3,0) (4,0) (5,0) ... ( ,0) 0U U U U U U U N                                               (142) 

 

From Eq. (230),  

  1(1,0) 2, (1,1) 4, (1,2) 8, (1,3) 16, (1,4) 32... (1, ) 1 2
N NU U U U U U N                  (143) 

The other coefficients are zero. 

  From the definition of differential transformation method, one can write that  

2

2 2 2 2 2

( , ) (0,0) (1,0) (0,1) (1,1) (2,0)

(0,2) (2,1) (1,2) (2,2) ...

u x y U xU tU xtU x U

t U x tU xt U x t U

    

    
                                                           (144)                                                                      

Substitute the coefficients in Eq. (143) into Eqs. (144), gives,  

 2 3 4 1 2
( , ) 2 4 8 16 32 ... 1 2

1 2

n n n x
u x t x xt xt xt xt xt

t

        


                                                            (145)  

Therefore,  

2
( , )

1 2

x
u x t

t



                                                                                                                                  (146) 
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The three methods give the same analytical solutions. However, in homotopy perturbation method, if 

the auxiliary parameters are chosen such that  ( ) , ( ) , ( , ) 0,t xx xL u u u N u uu f x t      the analytical 

solution is not 
2

1 2

x

t
. 

 

3.3 Solutions of Nonlinear Differential Equations in Practical Situations 

Example 5: Kinetic model of a biochemical reaction: The dimensionless forms of Michaelis-Menten 

biochemical reaction model are  

 

 
dx

x y xy
dt

                                                                                                                       (147) 

 
1dy

x y xy
dt




                                                                                                                             (148) 

where x is the dimensionless form of the concentration of substrate while y is the dimensionless form of 

the concentration intermediate complex between enzyme and substrate. ,  and   are dimensionless 

parameters. 

 

The initial conditions are given as  

(0) 1x  , (0) 0y                                                                                                                             (149) 

Given 
3 1

, ,
8 10

   and 1   and using homotopy perturbation method, Taylor series expansion and 

differential transformation methods to solve the dimensionless forms of Michaelis-Menten biochemical 

reaction model, we have the same approximate analytical solutions   

 

2 3 4 5 669 757 47767 3800401 156000923
( ) 1 ...

8 12 128 1920 15360
x t t t t t t t                                                (150)  

 

2 3 4 5 69145 17785 4440661 44551057
( ) 10 105 ...

12 4 192 384
y t t t t t t t                                                (151) 

 

For the above solutions, the choice of the auxiliary parameters for the homotopy perturbation 

method is,  

  0( ) , ( , ) , ( ) 0, 1,
dx

L x N x y x y xy f t x
dt

                                                                             (152) 

       0

1
( ) , ( , ) , ( ) 0, 0,

dy
L y N x y x y xy f t y

dt



                                                             (153)                           

 

The Taylor series expansion solutions are the expansions about t = 0. 

 

Example 6: Nonlinear thermal model of a stationary fin with constant thermal conductivity: The 

dimensionless form of one-dimensional heat transfer model in longitudinal rectangular fin is given as 
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2
2 1

2
0 0 1nd

M x
dx


                                                                                                              (154) 

where x is the dimensionless length of the fin and   is the dimensionless temperature. 

 

The boundary conditions are given as  

0, 0,
d

x
dx


   

1, 1,x                                                                                                                                           (155) 

 

using homotopy perturbation method, Taylor series expansion and differential transformation methods 

to solve the above equation, we have the same approximate analytical solution as 

 
 

       

  

8 4 1 24 2 1 6 3 12 1
2 4 6 8

10 5 1 3 2

10

1 34 5 11 1 4 1
( )

2 24 720 40320

1 496 66 69 1
...

3628800

nn nn
ee ee

e

n

e

M n n nM n M n nM
x x x x x

M n n n n
x

 
 



 



    
    

   
 

                 (156) 

 

For the above solutions, the choice of the auxiliary parameters for the homotopy perturbation 

method is,  

2
2 1

02
( ) , ( ) , ( ) 0, ( )n

e

d
L N M f x x

dx


                                                                        (157) 

The Taylor series expansion solutions are the expansions about x = 0. 

 

The complete solution is obtained once the constant e  is determined by imposing the second boundary 

conditions given by (1) 1  . Note that the value of e  lies in the interval (0,1). 

 

Example 7: Nonlinear thermal model of a stationary fin with variable thermal conductivity: The 

dimensionless form of one-dimensional heat transfer model in longitudinal rectangular fin is given as 

 

2 1(1 ) 0 1nd d
M x

dx dx


   

    
 

                                                                                                 (158) 

where x is the dimensionless length of the fin and   is the dimensionless temperature. 

 

The boundary conditions are given as  

0, 0,
d

x
dx


   

1, 1,x                                                                                                                                             (159) 

 

using homotopy perturbation method, Taylor series expansion and differential transformation methods 

to solve the above equation, we also have the same approximate analytical solution as 
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 

   

 

       

 
 

       

   

 

6 3 1

2 2 24 2 12 1
2 4 6

3 5

2 2

8 4 1 2 2 2

3 2 3

1 4 1 8 1 2

4 13 81 2
( )

2! 1 4! 1 6! 1

1 34 5 1 3 1 34 5 1

3 1 34 135 200

34 171 474 896

e
n

e
nn

ee ee
e

e e e

e

n

e e

n n n n
M

n nM n nM
x X x X

n n n n n n

M n n n

n n n




  
 

  



  









     
 
         

   
  

      

   

   


 

   

   

  

   

 

3

8

7

3 2

3 2

10 5 1 3 2 2 2

3 2 3 3

4 3 2 4 4

8! 1

1 496 66 69 1

2 1 992 2094 687 166

12 1 248 1014 1129 651

2 1 992 6018 15747 19948

496 3494 12513 31538 51184

e

e

e

n

e e

e

e

X

n n n n

n n n n

M n n n n

n n n n

n n n n







  

 

 



 
 
 
 
 
 



    

    

    

    

    


 
10

9
...

10! 1 e

X











 



    (160) 

 

For the above solutions, the choice of the auxiliary parameters for the homotopy perturbation 

method is,  

22 2
2 1

02 2
( ) , ( ) , ( ) 0, ( )n

e

d d d
L N M f x x

dx dx dx

  
       

      
 

                                        (161) 

The Taylor series expansion solutions are the expansions about x = 0. 

 

The complete solution is obtained once the constant e  is determined by imposing the second boundary 

conditions given by (1) 1  . Note that the value of e  lies in the interval (0,1). 

 

4. Conclusions 

In this work, the conditions of similar analytical solutions of homotopy perturbation, differential 

transformation and Taylor series expansion methods for linear and nonlinear differential equations 

have been investigated and established. From the different examples presented, it was established 

that if some specific values or functions are assigned to the auxiliary parameters in the homotopy 

perturbation method, the approximate analytical solutions provided by homotopy perturbation 

method is entirely similar to the approximate analytical solutions given by differential 

transformation and traditional Taylor series expansion methods. This means that the choice of the 

auxiliary parameters determines the possibility that homotopy perturbation will give similar 

approximate analytical solutions like Taylor series expansion and differential transformation 

methods. The results of TSM at the center exactly correspond to the results of HPM and DTM. 

These methods give the solutions in the form of a convergent series with easily computable 

components. Also, additional results were established from the studies which are stated as follows: 

 

i. While the DTM and TSM can be taken as semi-analytical methods for boundary-value 

problems, HPM is a total approximate analytical method as it does not need any numerical 

scheme as practice in DTM and TSM when the value(s) that will satisfy the terminal boundary 

condition(s) which is/are to be found when solving boundary-value problems.   

 

ii. The DTM can be taken as an extended Taylor series expansion method as it allows an easy 

generalization of the Taylor series expansion method to various derivation procedures. 

However, Taylor series method suffers from certain computational difficulties. Also, DTM 
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produces fast convergence to the available analytical solution. DTM requires less 

computations than the traditional Taylor series expansion method because DTM does not need 

to calculate derivatives or partial derivatives as done in Taylor series expansion method. 

 

iii. The study also showed that the differential transformation method is simple and easy to use. 

It produces reliable results with relatively low computational works and algorithmic nature. 

Also, DTM minimizes the computational difficulties of the TSM in that the components are 

easily determined. Further, HPM is capable of reducing the volume of the computational work 

as compared to the TSM. 

 

It is believed that this work will greatly assist and enhance the understanding of mathematical 

solutions providers and enthusiasts as it provides better physical insight into the development of 

analytical solutions of linear and nonlinear differential equations. 
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