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In this paper a third-order rectangular nanoplate model is developed for 
the bending and vibration analysis of a graphene nanoplate based on a 
modified couple stress theory. The bending rates and dimensionless 
bending values under uniform surface traction and sinusoidal load, and 
the frequencies of the nanoplate are all obtained for various plate's 
dimensional ratios and material length scale to thickness ratios. The 
governing equations are numerically solved. The effect of material 
length scale, length, width and thickness of the nanoplate on the bending 
and vibration ratios are investigated and the results are presented and 
discussed in details. 
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1. Introduction 

Study of small-scale materials has been the focus of lots of research. It is pointed out that in order to 

study materials in small scales, experimental approaches give the most reliable results but due the 

difficulties in running such experiments in small scales these approaches are mostly used as a 

validation tool for other simpler methods. Atomic simulation is another method to cope with this 

matter but it is only used for the problems with small deformations because it is extremely cost and 

time consuming. 

In the search to find a better method to model nanostructure materials, researches proposed another 

method. This method uses continuum mechanics to model small scale structures such as nano 

materials. There are various size-dependent continuum theories that take into account the effect of 

the size parameter. All of these theories are the developed notion of classical field theories which 

include size effects. 

Daikh et al, [1] studied A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid 

functionally graded sandwich nanoplates. They investigated the effect of the elastic foundation 
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models, sigmoidal distribution index constant, configuration of sandwich plate, material and length 

nanoscales, boundary conditions on the static deflection.  

Yang et al, [2] studied the axisymmetric bending and vibration of circular nanoplates with surface 

tractions. They investigated the effect of the material's surface properties on the deflection and natural 

frequencies. 

Shafiei et al, [3] employed the modified couple-stress theory to study stability and vibration of single 

and multi-layered graphene sheets. The effects of different parameters such as loading schemes, 

nanoplate dimensions and boundary conditions were investigated. 

Thanh et al, [4] studied the size-dependent thermal bending and buckling responses of 

composite laminate microplate based on new modified couple stress theory and isogeometric analysis. 

The influences of fiber orientation, thickness ratio, boundary conditions and the variation in material 

length scale parameter were also investigated. 

 

In this paper, size-dependent nanoplate model is developed to account for the size effect. Hamilton 

principle is used to derive the equations of motion based on the mentioned theories (i.e. modified 

couple stress and third order shear deformation theories). In order to investigate the effects of material 

length scale parameter on deflection and frequency, analytical solution is obtained for a simply 

supported plate and results are discussed. 

2. Modified couple stress theory 

The modified couple stress model was proposed by Yang et al. [5] after developing the theory 

proposed by Toppin [6], Mindlin and Thursten [7], Quitter [8] and Mindlin [9] in `1964. The 

advantage of Yang's model is that instead of two parameters, it only needs one material length scale 

parameter for projection of the size effect. In this theory the strain energy density in the three-

dimensional vertical coordinates for a body bounded by the volume V and the area Ω [10], is expressed 

as the follows: 
 
 

U =
1

2
�  

�

�σ ��ℇ �� + m ��χ���dV    i, j = 1,2,3 
(1) 

 

where: 

 

ℇ �� =
1

2
(u�,� + u�,�) 

(2) 

��� =
1

2
���,� + ��,�� 

 

(3) 

��� and ���  are the symmetric part of the curvature and strain tensors, respectively, and 

also, �� and  ��   are the displacement vector and the rotational vector, respectively. 
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��� and ��� the stress tensor and deviatory part of  the couple stress tensor, respectively, are 

defined as: 
 

σ �� = λℇ ��δ�� + 2μℇ �� 
(5) 

m �,� = 2μ l�χ�� 
(6) 

 

Where � and � lame constants, δij is the Kronecker delta and l is the material length scale 

parameter. From Equation (3) and (6) it can be seen that χij and mij are symmetric. 

3. Third-order plate model 

The displacement equations for the third-order plate are defined as following: 
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Where  φ

x 
 and ��  are the rotations of the normal vector around the x and y axis respectively, and w 

is the midpoint displacement of the plate in the z-axis direction. 

In Figure 1 an isotropic rectangular nanoplate with length a, width b and thickness h is shown. 

 

 

 

 

 

 

 

 

 
Figure. 1. A schematic of the nanoplate and axes 

 
The strain and stress tensors, the symmetric part of the curvature tensor, and the rotational vector for 

the nth-order plate are given in the appendix. 

The variation of strain energy is expressed as follows: 

 

δU = �  
�

σ �� δ ℇ �� + σ �� δℇ �� + 2σ �� δ ℇ �� + 2σ �� δ ℇ �� + 2σ �� δ ℇ �� + m �� δ x�� + m �� δx�� + m �� δx��

+ 2m �� δx�� + 2m �� δx�� + 2m �� δ x��)dV 

 

To simplify, the coefficients name of the variables can be denoted from E1 to E15 according to 

Equation (9) and they are obtained separately. (E1 - E15 are given in the appendix) 
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δU = �  
�

(E�δw ,��+ E� δw ,��+ E� δw ,��+ E�δ w ,� 

 + E� δ w ,�+ E� δ φ �,�� + E�δ φ �,�� + E� δ  φ �,�� + E� δφ �,�� 

+ E�� δ φ �,� + E�� δφ �,� + E��δφ �,� + E�� δ φ �,� + E�� δφ � + E�� δφ �)dV  

4. Virtual work of the external forces [11] 

If the middle-plane and the middle-perimeter of the plate are shown as Ω and Γ respectively, the 

virtual work of the external forces can be categorized as, the virtual work done by the body forces 

applied on the volume V= Ω× (- h⁄2, h⁄2), The virtual work done by the surface tractions at the upper 

and lower surfaces (Ω) and finally the virtual work of the shear tractions on the lateral surfaces, S= 

Γ× (- h⁄2, h⁄2). Considering the body forces (fx, fy, fz), the body couples (cx, cy, cz), the forces acting 

on the Ω plane (qx, qy, qz), the Cauchy's tractions (tx, ty, tz) and the surface couples (Sx, Sy, Sz) the 

Variations of the virtual work is obtained as follows: 

δw = −�∫  
Ω

(f�δu + f�δV + f�δw + q�δu + q�δV + q�δw + c�δθ� + c� δθ� +

c�δθ�) dx dy + ∫  
Γ

(t�δu + t�δV + t�δw + s�θ�   + s�δθ� + s�δθ�)dΓ]  

(10) 

 

Given that in this study only the external force qz is applied, Eq. (10) becomes: 
 

δw = � � q(x, y)δw (x, y)dx dy 
�

�

�

�

 
(11) 

 

The variation of kinetic energy is as follows: 
 

δT = � � ρ(u̇�δu̇� + u̇�δu̇� + u̇�δu̇�)dA dz 

�
�

��
��

 
(12) 

 

Where ρ is the density. Also using the Hamilton's principle [12], it can be said: 
 

� �δT − (δU − δw )�dt
�

�

= 0 
(13) 

 

Where T is kinetic energy, U is the strain energy, and W is the external force work. 

 

5. Final governing equations 
Using Hamilton's principle Eq. (13), the main equations are obtaine: (C� − C�� & D� − D�� are given in the 

appendix) 
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(16) 

 

coefficients of J� and K� are obtained as the following: 

 

J� = I� − C� I� 
(17) 

K� = I� − 2C� I� − C�
�I� 

(18) 

I� = � Z�  dz

�
�

�
�
�

 (i = 0,1, 2, n − 1, n, n + 1, 2n − 4, 2n − 2, 2n) 

 (19) 

6. Third-order plate equations in the general state  

The general equations of the third-order plate will be obtained as following: 
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7. Navier's solution method 

The Navier's solution method is applicable to rectangular plates with simply-supported boundary 

conditions at all edges. Because the boundary conditions are spontaneously satisfied in this way, the 

functions of the plate's mid-plane are expressed as double trigonometric series [13 & 11]: 
 

W(x, y, t) = ∑ ∑ W�� sin αxsin βy e����
���

�
���   (23) 

φ �(x, y, t) = ∑ ∑ X�� cos αxsin βy e����
���

�
���   (24) 

φ �(x, y, t) = ∑ ∑ y�� sin αxcos βy e����
���

�
���   (25) 

 

 

The load can also be calculated from the following relation: 
 
 

q= ∑ ∑ Q�� sin αxsin βy e����
���

�
���   (26) 

Q�� =
�

��
∫ ∫ q(x, y)sinαxsin βy dx dy

�

�
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Q�� = �

q�      ; For sinusoidal force 
����

����     ; For uniform  force 

���

��
 ; For point force in the plane center 

  (28) 

 

 

Where in:  
 
 

α =
πm

a
   , β =

πn

b
 , i = √−1 (29) 

 

 

Simply-supported boundary conditions were also satisfied by the Navier's method according to 

the following equations: 
 
 

x = 0 
,

x = a
�
w (0, y) = w (a, y) = ∑ ∑ w �� sin

��

�
 xsin

��

�
 y = 0   

φ �(0, y) = φ �(a, y) = ∑ ∑ y�� sin
��

�
 xcos

��

�
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  (30) 

y =  در
,

y = b

�
w (x, 0) = w (x, b) = ∑ ∑ w �� sin

��

�
 xsin

��

�
 y = 0

φ �(x, 0) = φ �(x, b) = ∑ ∑ X�� cos
��

�
 xsin

��

�
 y = 0

  (31) 

8. The matrix of equations 

The general matrix of the third-order plate equations along with the auxiliary equations are obtained 
using the Navier's solution (R� − R� & G� − G� are given in the appendix) 
 

��

R� R� R�

R� R� R�

R� R� R�

� − ω� �

G� G� G�

G� G� G�

G� G� G�

�� �

w ��

X��

y��

� = �
Q��

0
0

� 
(32) 

 

Various materials such as epoxy, graphene, copper and so on can be considered as the plate's 

material. In this study, graphene is chosen as the plate's material. A single-layer graphene plate 

has the following properties [12]: 
 

� = 1.06TPa, ν = 0.25 , h = 0.34nm , ρ = 2250
kg

m ��  
 

Also, the relationship between E and μ and ν can be written as following: 
 

λ =
ν�

(1 + ν)(1 − 2ν)
     , μ =

�

2(1 + ν)
 

(33) 

 

Where E is Young's modulus and μ and λ are lame coefficients [14]. Also, the value of the force 

q = 1N⁄m2 was considered. 

9. Results and discussion 

The computational program was written in Matlab software, and the results were obtained using this 

program. All boundary conditions were also considered as simply-supported.  

Figure 2 shows the third-order nanoplate bending rate under uniform surface traction for the length 

to width ratio and length to thickness ratio. As shown in the figure, with increasing the length 
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parameter to the thickness of the nanoplate, the bending ratio decreased. Furthermore, the bending 

ratio increased with increasing aspect ratio of the nanoplate. 

Table 1 shows the dimensionless bending values of the third-order nanoplate under the sinusoidal 

load for the ratio of length to width and ratio of length to thickness. As shown in the table, with 

increasing length to the thickness parameter, the dimensionless bending value of the nanoplate 

decreased. Moreover, with increasing aspect ratio of the nanoplate, the dimensionless bending value 

increased except for the state that the length scale parameter was ignored. 

 

Table 2 compares the dimensionless bending values of different nanoplates under the sinusoidal load 

for different length to width ratios. As can be seen in the table, the dimensionless bending value was 

the highest for Kirchhoff's nanoplate and the lowest for the Mindlin's nanoplate. 

Figure 3 shows the frequency of third-order nanoplate different modes (ω11-ω12-ω21-ω22). This value 

decreased due to an increase in length parameter to thickness. Similarly, frequency was the lowest 

for the first mode and increased for the next modes. 

Table 3 compares the third-order nanoplate different modes' frequencies for different length to width 

ratios. As can be seen, with increasing the aspect ratio, the vibration frequency value for different 

modes decreased.  

Table 4 shows the frequency of different modes (ω11-ω12-ω21-ω22) for diverse nanoplates. According 

to the table, the frequency value was the highest for the Mindlin's nanoplate and the lowest for the 

third-order nanoplate. 

 

 
Figure. 2. The third-order nanoplate bending rate under uniform surface traction for the length to width ratio and 

length to thickness ratio (q=1e-18 N/nm2  a/h=30) 

 

 

 

Table 1. The dimensionless bending value of the third-order nanoplate under the sinusoidal load for length to width 

ratio and length to thickness ratio (q=1e-18 N/nm2  a/h=30) 

a/b l/h 
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0 0.5 1 2 

1 1.00000 0.49858 0.19912 0.05852 

1.5 1.00000 0.49883 0.19927 0.05858 

2 1.00000 0.49895 0.19935 0.05860 
 

 
 
 

Table 2. The dimensionless bending value comparison of the various nanoplate under the sinusoidal load effect for 
length to width ratio (q=1e-18 N/nm2, l/h=1  a/h=30) 

a/b 
Kirchhoff 

plate 
Mindlin 
plate 

Third order shear 
deformation plate 

N order shear 
deformation plate 

(n=5) 

1 0.2 0.072264 0.19912 0.19907 

1.5 0.2 0.072121 0.19927 0.19923 

2 0.2 0.072049 0.19935 0.19931 
 

 

 

Table 3. The frequencies comparison of third-order nanoplate different modes for length to width ratio (a/h=30) 

Mode 
l/h 

0 0.5 1 2 

 a/b=1 

��� 13.9441 19.7447 31.2407 57.6223 

��� 34.6497 49.1546 77.8533 143.6613 

��� 34.6497 49.1546 77.8533 143.6613 

��� 55.1098 78.3225 124.1752 229.2384 

��� 121.6342 173.8911 276.5826 511.3107 

 a/b=2 

��� 8.7284 12.3536 19.5411 36.0389 

��� 13.9441 19.7447 31.2407 57.6223 

��� 29.4967 41.8251 66.2277 122.1954 

��� 34.6497 49.1546 77.8533 143.6613 

��� 77.0069 109.6563 174.0385 321.4395 
 

 
Figure. 3. The frequencies comparison of third-order nanoplate different modes for length to width ratio (a/b=1, 

l/h=1) 
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Table 4. The frequencies comparison of numerous nanoplate different modes for the various length to width ratios 

(l/h=1, a/b=1.5) 

Mode 
a/h 

20 30 40 

 Mindlin plate 

��� 83.8680 37.5829 21.2022 

��� 159.1488 071.8354 40.6324 

��� 250.5691 114.0783 64.7336 

��� 321.6951 147.4292 83.8680 

 Kirchhoff plate 

��� 50.8001 22.5964 12.7141 

��� 97.5592 43.4282 24.4419 

��� 155.8295 69.4324 39.0903 

��� 202.3037 90.2074 50.8001 

 Third order shear deformation plate 

��� 50.6984 22.5761 12.7077 

��� 97.1889 43.3538 24.4182 

��� 154.8989 69.2435 39.0300 

��� 200.7540 89.8902 50.6984 
 

10. Conclusion 
In this study, the bending and vibration of third-order nanoplate were investigated using the modified 

couple stress theory.  As observed in the tables and figures, the third-order nanoplate bending rate 

under uniform load effect, decreased with increasing the length to thickness ratio parameter of the 

nanoplate, however, the bending ratio increased with increasing aspect ratio. Also, the third-order 

nanoplate dimensionless bending value under the sinusoidal load, decreased with increasing length 

to thickness ratio parameter. Furthermore, the dimensionless bending value increased with increasing 

aspect ratio except for the state that the length scale parameter was ignored. The dimensionless 

bending value was also the highest for Kirchhoff's nanoplate and the lowest for Mindlin's nanoplate. 

In addition, the frequency of the third-order nanoplate different modes, decreased with increasing the 

length to thickness ratio. Additionally, the frequency value for the first mode was the lowest value 

and increased for the next modes. Moreover, different modes' vibration frequency was decreased by 

increasing aspect ratio. 
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APPENDIX: 

strain tensors: 

ℇ �� = z
∂φ �

∂x
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4

3
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h
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ℇ �� = ℇ �� = �
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2
− 2 �
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(5) 
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z
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symmetric part of the rotational vector: 

θ� =
∂w

∂y
− �

1

2
− 2 �

z

h
�

�

� �
∂w

∂y
+ φ �� 

(7) 

θ� = −
∂w

∂x
+ �

1

2
− 2 �

z

h
�

�

� �
∂w

∂x
+ φ �� 

(8) 

θ� =
1

2
�z −

4

3
�

1

h
�

�

 z�� �
∂ φ �

∂x
−

∂φ �

∂y
� 

(9) 

symmetric part of the curvature tensor: 

x�� =
∂�w

∂x ∂y
− �

1

2
− 2 �

z

h
�

�

� �
∂�w

∂x ∂y
+

∂φ �

∂x
� 

(10) 

x�� = −
∂�w

∂x∂y
+ �

1

2
− 2 �

z

h
�

�

� �
∂φ �

∂y
+

∂�w

∂x∂y
� 

(11) 

x�� = �
1

2
− 2 �

z

h
�

�

� �
∂φ �

∂x
−

∂φ �

∂y
� 

(12) 

x�� =
1

2
�

∂�w

∂y�
−

∂�w

∂x�
� + �

1

4
− �

z

h
�

�

� �
∂�w

∂x�
+  

∂φ �

∂x
−

∂�w

∂y�
−

∂φ �

∂y
� 

(13) 

x�� =
1

4
 �z −

4

3
�

1

h
�

�

 z�� �
∂�φ �

∂x�
−

∂�φ �

∂y ∂x
� + 2z �

1

h
�

�

�
∂w

∂y
+ φ �� 

(14) 

x�� = −2z �
1

h
�

�

�
∂w

∂x
+ φ �� +

1

4
�z −

4

3
�

1

h
�

�

 z�� �
∂�φ �

∂x∂y
−

∂�φ �

∂y�
� 

(15) 

stress tensors: 

σ �� = (λ + 2μ)ℇ ��  + λℇ �� 

(16) 

σ �� = λℇ ��  + (λ + 2μ)ℇ �� (17) 

σ �� = λ�ℇ �� + ℇ ��� (18) 

σ �� = σ �� = 2μ ℇ �� (19) 

σ �� = σ �� = 2μ ℇ �� (20) 

σ �� = σ �� = 2μ ℇ �� (21) 

The coefficients of E: (22) 
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E� =
���

���  � (λ + 2μ)(C� − C�C�) + �

�
μl�(1 + C�) − �

�
μl�(1 + C�)(1 − C�)� +  

���

���  �λ(C� − C�C�) −

�

�
μl�(1 + C�) + �

�
μl�(1 −  C�)(1 + C�)� +   

���

��
�−(λ + 2μ)(C�C�) − �

�
μl�(1 − C�)(1 + C�)� +

  
���

��
�−λ(C�C�) − �

�
μl�(1 − C�)(1 + C�)�  

E� =
���

���  � (λ + 2μ)(C� − C�C�) + �

�
μl�(1 + C�) − �

�
μl�(1 +   C�)(1 −    C�  )� +  

���

���  �λ(C� −

C�C�) − �

�
μl�(1 + C�) + �

�
μl�(1 − C�)(1 + C�)� +    

���

��
�−(λ + 2μ)(C�C�) − �

�
μl�(1 −  C�)(1 +

C�)� +  
���

��
�−λ(C�C�) − �

�
μl�(1 −  C�)(1 + C�)�  

(23) 

E� =  
���

�� ��
�4μ C�

� + μl�(1 + C�)�� +
���

��
�−2μC�C� − �

�
μl�(1 − C�)(1 + C�)� +  

���

��
�−2μC�C� −

�

�
μl�(1 −  C�)(1 + C�)�  

(24) 

E� = �
��

��
+ φ ���μ(1 − C�)� + �

�
μl�C�

�� + �
����

�� ��
−

����

��� ���

�
μl�C�C��  

(25) 

E� = �
��

��
+ φ ���μ(1 − C�)� + �

�
μl�C�

�� + �
����

�� ��
−

����

��� ���

�
μl�C�C��  

(26) 

E� = E� = �
∂w

∂x
+ φ �� �

�

�
μl�C�C�� + �

∂�φ �

∂x∂y
−

∂�φ �

∂y�
� � 

�

�
μl�C�

�� 
(27) 

E� = E� = �
��

��
+ φ ���−�

�
μl�C�C�� + �

����

��� −
����

�� ��
�� �

�
μl�C�

��                   
(28) 

E�� =
���

��� � (λ + 2μ)�C�
� − zC�� − �

�
μl�(1 − C�)(1 + C�)� +  

���

��� �λC�(−z + C�) +

�

�
μl�(1 −  C�)(1 + C�)� +

���

��
� (λ + 2μ)C�

� + �

�
μl�(1 −  C�)�� +

���

��
�λC�

� − �

�
μl�(1 − C�)��  

(29) 

E�� =
���

���
� (λ + 2μ)�C�

� − zC�� − �

�
μl�(1 − C�)(1 + C�)� +  

���

���
�λA�(−z + C�) +

�

�
μl�(1 −  C�)(1 + C�)� +

���

��
� (λ + 2μ)C�

� + �

�
μl�(1 − C�)�� +

���

��
�λC�

� − �

�
μl�(1 − C�)��  

(30) 

E�� =  
���

�� ��
�−2μC�C� − �

�
μl�(1 −  C�)(1 + C�)� +

���

��
�μC�

� + μl�(1 − C�)�� +
���

��
�μC�

� −

�

�
μl�(1 −  C�)��  

(31) 

E�� =
���

�� ��
�−2μC�C� − �

�
μl�(1 −  C�)(1 + C�)� +

���

��
�μC�

� − �

�
μl�(1 −  C�)�� +

���

��
�μC�

� +

μl�(1 − C�)��  

(32) 

E�� = �
��

��
+ φ ���μ(1 − C�)� + �

�
μl�C�

�� + �
����

�� ��
−

����

��� ���

�
μl�C�C��  

(33) 

E�� = �
��

��
+ φ ���μ(1 − C�)� + �

�
μl�C�

�� + �
����

�� ��
−

����

��� ���

�
μl�C�C��  

(34) 

The coefficients of C: 

C� = z −
�

�
�

�

�
�

�

 z�  

(35) 

C� =
4

3
�

1

h
�

�

 z� 
(36) 
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C� =
4

3
�

1

h
�

�

 z� 
(37) 

C� = 4 �
z

h
�

�

 
(38) 

C� = −8z �
1

h
�

�

 
(39) 

C� =
4

3
�

1

h
�

�

 
(40) 

C� = μ
h

3
 

(41) 

C� =  μ
h

5
 

(42) 

C� =
h�

252
(λ + 2μ) 

(43) 

C�� = (λ + 2μ)
h�

60
 

(44) 

C�� =   μ l�
4

3h
 

(45) 

C�� =
�

�
μ l�h (46) 

The coefficients of D: 

D� = 2C�� + l�C� +
�

�
l�C� + 2C�  

(47) 

D� =
1

2
D� = C�� + C� +

�

�
l�C� +

�

�
l�C�  

(48) 

D� = −μh + 2C� − C� − C��  
(49) 

D� = C� − C�� +
�

�
l�C� − C��  

(50) 

D� = 3C�� −
�

�
l�C� +

�

�
l�C� − (λ + μ)I� + 2(λ + μ)C� I� − (λ + μ)C�

�I� 
(51) 

D� = −μI� + 2μC� I� − μC�
�I� − 4C�� + 2l�C� − l�C�  

(52) 

D� =
�

�
μl�I� −

�

�
μl�C�I� +

�

�
μl�C�

�I� 
(53) 

D� = −(λ + 2μ)I� + 2C�� − C� − C�� +
�

�
l�C� −

�

�
l�C�  

(54) 

D� =
�

�
l�C� −

�

�
μl�C�

�I� −
�

�
l�C� + 3C�� − (λ + μ)I� − (λ + μ)C�

�I� + 2(λ + μ)C�I� 
(55) 

D�� = 3l�C� −
�

�
l�C� +

�

�
μl�C�

�I� − μI� − μC�
�I� + 2μC�I� − 4C��  

(56) 

D�� = ρC�
�I� 

(57) 

D�� = ρC�I� − ρC�
�I� 

(58) 
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D�� = ρI� − 2ρC�I� − ρC�
�I� 

(59) 

 

 

The coefficients of R: 

R� = D�α�β� + D�α� + D�β� − D�α� − D�β� 

 
 
 
 

(60) 

R� = R� = D�α� + D�α β� − D�α 
(61) 

R� = R� = D�β� + D�α�β − D�β 
(62) 

R� = −D�β� − D�α�β� − D�β� − D�α� − D� 
(63) 

R� = D�αβ� + D�α�β − D�αβ 
(64) 

R� = −D�α�β − D�αβ� − D�αβ 
(65) 

R� = D� α� + D�α�β� − D��α� − D�β� − D� 
(66) 

 

The coefficients of G: 

G� = −D��α� − D�� β� − ρh 

 
 
 
 
 

(67) 

G� = G� = D��α 
(68) 

G� = G� = D��β 
(69) 

G� = G� = −D�� 
(70) 

G� = G� = 0 
(71) 

 


