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 The purpose of this paper is to present a wavelet method for 
numerical solutions Fokker-Planck-Kolmogorov time-fractional 
differential equations with initial and boundary conditions. The 
authors was employed the Bernoulli wavelets for the solution of 
Fokker-Planck-Kolmogorov time-fractional differential equation. We 
calculated the Bernoulli wavelet fractional integral operation matrix 
of the fractional order and the upper error boundary for the Riemann‐ 
Liouville fractional integral operation matrix and the Bernoulli 
wavelet fractional integral operation matrix. The Fokker-Planck-
Kolmogorov time-fractional differential equation is converted to the 
linear equation using the Bernoulli wavelet operation matrix in this 
technique. This method has the advantage of being simple to solve. 
The simulation was carried out using MATLAB software. Finally, 
the proposed strategy was used to solve certain problems. the 
Bernoulli wavelet and Bernoulli fraction of the fractional order, the 
Bernoulli polynomial, and the Bernoulli fractional functions were 
introduced. Explaining how functions are approximated by fractional-
order Bernoulli wavelets as well as fractional-order Bernoulli 
functions. The Bernoulli wavelet fractional integral operational 
matrix was used to solve the Fokker-Planck-Kolmogorov fractional 
differential equations. The results for some numerical examples are 
documented in table and graph form to elaborate on the efficiency 
and precision of the suggested method. The results revealed that the 
suggested numerical method is highly accurate and effective when 
used to Fokker-Planck-Kolmogorov time fraction differential 
equations 
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1. Introduction   

Fractional Differential Equations are the generalization of ordinary differential equations of 

arbitrary order (non-integer). In recent years, the application of fractional differential equations has 

increased in many fields. Therefore, analyzing and solving these equations has become one of the 

researchers' concerns. It is not always possible to obtain a closed-form solution for these equations, 

and even in many cases, it is impossible. Therefore, researchers have tended to use approximate 

methods to solve this type of problem[3].In the Mid-Nineteenth Century, Riemann and Liouville 

introduced the concept of Differential Calculus. But Oldham and Spanier published the first book in 

this context in 1974. It did not take long that the number of publications on fractional calculus 

experienced a rapid increase. The reason is that many physical systems show fractional-order 

dynamics, meaning that their behavior is under fractional differential equations control [1]. 

Fractional differential equation is the generalization of ordinary differential equation to arbitrary 

order (non-integer). Everybody can find the history of fractional differential equations appearance 

in [2]. Many researchers are interested in fractional differential equations because these equations 

have a high ability to model complex phenomena such as economics [10], statistical and quantum 

mechanics [11], solid mechanics [12], and joint surface dynamics between rigid layers and soft 

nanoparticles [13]. Moreover, researchers are eager to improve numerical methods to solve them. 

These methods include Fourier transformation [14], eigenvector expansion [15], Laplace transforms 

[16], Edomian decomposition method [17], finite difference method [18], power series method [19], 

fractional differential conversion method [20], and homotopic analytical method [21]. Meanwhile, 

orthogonal functions have a particular place especially facing various problems of dynamical 

systems. Researchers have employed orthogonal functions to solve many fractional differential 

equations. The importance of orthogonal functions is that they can reduce a differential equation 

into an algebraic equation using derivative or integral operational matrices. Among orthogonal 

polynomials, the transferred Legender polynomials (��(�), � = 0,1,2, … ,0 ≤ � ≤ 1) have the best 

behavior and are more computationally efficient [22] and [23].Tyler and Bernoulli polynomials 

(��(�), � = 0,1,2, … ,0 ≤ � ≤ 1) are not orthogonal. However, it is possible to calculate their 

integral operational matrix. Since the integral of multiplying two Tyler vectors is a kind of Hilbert's 

bad matrix [24], the applications of the Tyler series are limited. In statistical mechanics, the Fokker-

Planck equation is a partial differential equation that accounts for the time evolution of the density 

probability velocity function for the particles influenced by drag and random forces. Brownian 

motion is described by this equation, which may be extended to include observations expect for 

velocity [28, 29]. For the first time, a mathematician and physicist, Joseph Fourier, proposed the 

idea of representing a function in terms of a complete set of functions. Fourier proved that it is 

possible to represent a function �(�) concisely using axes made up of a set of sine-like functions. In 

other words, Fourier showed that it is feasible to represent a function �(�) by an infinite sum of sine 

and cosine functions in in the form ofsin(��) and cos (��). Fourier bases became essential tools 

with many applications in science. But over time, the weakness of the Fourier foundations became 

apparent. Scientists found that Fourier bases and the representation of sine-like functions for 

complex theoretical image signals are not ideal. For instance, they cannot efficiently display 

transitory structures such as existing boundaries in images. They also observed that the Fourier 

transform is applicable only for elementary functions. In 1957, Har was the first to point out the 

wavelets. Generally, the goal of wavelet theory is to find new bases for ��(ℝ) . In this paper, we 

defined a new set of fractional functions. This set is called Bernoulli fractional-order wavelets and 
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constructed on Bernoulli wavelets by changing � to ��[30]. We show Bernoulli fractional-order 

wavelets ��,� (��) with��,�
� (�). Furthermore, we obtained the transformation matrix of Bernoulli 

fractional-order wavelets to Bernoulli fractional-order functions. Finally, we found the operational 

matrix of the Bernoulli fractional-order wavelet integral. Previous research has suggested a 

technique for solving two-dimensional Fokker-Planck equations for non-hybrid continuous systems 

using the finite difference approach, and the proposed method’s stability and accuracy have been 

investigated. Many other articles are written on the numerical solution of Fokker-Planck equations 

[26, 27]. The Bernolii wavelet method is utilized in this study to solve the Fokker-Planck-

Kolmogorov time-fractional differential equations in the following way[25]:   

��
�� −

�

�
���� ���

�� � + (� − 2� �)�
��

��
+ (� − � �)� = �(�, �)                             (1) 

Initial conditions: 
u(0, x) = ��(�), ��(0, �) = ��(�),    0 ≤ � ≤ 1  

Boundary conditions:  
u(�, 0) = ��(�),    ��(�, 1) = ��(�),    0 ≤ � ≤ 1 

�(�, �) Is the right side function of the equation, which is given for each equation. 
2. Preliminaries: 

2.1. Fractional order integral and Fractional Order Derivative 

The Riemann ‐ Liouville fractional integral operator of order � of the function �(�) ∈ �� ;  � ≥ −1 

is defined as follows [7]: 

�� �(�) = �

�

�(�)
∫

�(�)

(���)��� ��
�

�
=

�

�(�)
���� ∗ �(�)   ; � > 0

�(�)                                                                       ; � = 0,
                                                  (2) 

where ����*f(t)  is the convolution product of the two functions ���� and f(t). 

The following formula is the definion of Riemann ‐ Liouville fractional integral operator which is 
the generalization of the Cauchy’s formula for integrals, 

∫ ���
��

�
∫ ���

��

�
… ∫ �����

����

�
=

�

(���)!
∫

�(�)

(���)��� ��.
�

�
                                    (3)  

For Riemann ‐ Liouville fractional integral, we have [7] 

 

(�������)(�) = �������(�);      ��, �� ≥ 0   

And 

(�������)(�) = (�������)(�),  

���� =
�(���)

�(�����)
����;       � > 0,                                                    (4)  

Riemann ‐ Liouville fractional integral is a linear operator, i.e 

������(�) + � ��(�)� = �����(�) + � ����(�),  

where �� and �� are constants. The Caputo fractional derivative of order υ of the function 

f(t)∈���
� is ([8-9]) 
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� ��(�) =  
�

�(���)
∫

�(�)(�)

(���)����� ��;      � − 1 < � ≤ �, � > 0, � ∈ ℕ
�

�
.  

Caputo fractional derivative satisfies in two relations below: 

(� ����)(�) = �(�)  

(� ����)(�) = �(�) − ∑ �(�)���
��� (0)

��

�!
,                                             (5)         

equation is a special state of the following equation 

� ����(�) = �������(�)(�) = ���� ��� �(�)(�)� = �����(�) − ∑
�(�)(�)

�(������)�

���
��� , � >

�,                                                    (6)  

where � − 1 < � ≤ � ��� � − 1 < � < �.  

Some properties of the Caputo fractional derivatives for  �(�) ∈ ��[0,1], 0 < � ≤ 1  for are listed 
below and you can find their proofs in [4]. 

1. (��� ��)(�) = �(�) − � (0), 

2. � � �� ��(�)� = � ��� � �(�)�, 

3. � � �� ��(�)� = � ��� �(�), 

4. � ��(�) = ����� ��(�);  � − 1 < � ≤ � , 

5. � �� = 0, 

6. ���� = 0 when � ∈ ℕ � and � < � , otherwise ���� =
�(���)

�(�����)
����, 

7. � �����(�) + � ��(�)� = ��� ��(�) + � �� ��(�), 

C, �� and �� are constants. 

3- Research method 
3-1- Bernolii wavelets and  

Bernolii wavelets on the interval [0.1) is defined as follows[4]: 

��,� (�) = �
2

���

� � ̅�(2������)             ��[��, ��)  
  

0                                      ��ℎ������           

 (7) 

Or  

� ̅�(�) =   �

�

�
(��)����!

(��)!
���

 ��(�)                           � > 0 

  
1                                             � = 0           

                              (8) 

where�� =
��

����   ، �� =
����

����     ، � = 0,1,2, … � − 1  and n=1,2,…, 2���,  

Bernolii polynomials are defined as follows[5]: 

��(�) = ∑ ��
�

�������
�
���  ,i=0,1,…,m,                                          (9) 

�

����
= ∑

��

�!
��

�
���  ,  �� = 1 , �� =

��

�
 , �� =

�

�
 , �� =

��

��
  , ����� = 0, � = 1,2,3, …        (10) 
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Figure1. Bernoulli wavelet with M=4 ,k=2 

 

3-2-Functions Approximation 

If {���
� (�), � ��

� (�), … , �
�������
� (�)} ⊂ ��[0,1] is a set of fractional-order Bernolii wavelets, then 

� = ��������
� (�), ���

� (�), … , �� ���
� (�), ���

� (�), … , �� ���
� (�), … , �

�����
� (�), �

�����
� (�), … , �

�������
� (�)�    (11) 

is a finite dimensional vector space. 

Since Y is finite dimensional vector space, there is the best approximation for �(�) in Y like ��(�) 
i.e 

∀�(�) ∈ �,    ‖�(�) − ��(�)‖ ≤  ‖�(�) − �(�) ‖.  

From the last relation, we can conclude that 

∀�(�) ∈ �,    < � (�) − ��(�), �(�) >= 0,                                              (12)   

where <, >  shows inner product. 

Because ��(�) ∈ �, there are unique coefficients such as ���, ���, … , �������� that  

�(�) ≃ ��(�) = ∑ ∑ ��� ��� (�)���
��� = ��Ψ �����

��� (�)                              (13)  

Where t represents transpose of matrix, C and Ψ �(�) are matrices of order 2���� × 1  and 

� = [���, ���, … , �� ���, ���, … , �����, … , ��������]�                         (14) 
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Ψ �(�) = [���
� (�), ���

� (�), … , �� ���
� (�), ���

� (�), … , �� ���
� (�), … , �

�����
� (�), �

�����
� (�), … , �

�������
� (�)]� (15)  

By the use of equation (3.14), we obtain 

< � (�) − � �Ψ �(�), Ψ �
� >= 0, � = 0,1, … , 2 ����                            (16) 

For simplicity, we write 

�� < Ψ �(�), Ψ �(�) >=< � (�), Ψ �(�) >,                                 (17) 

where  

� =< Ψ �(�), Ψ �(�) >= ∫ Ψ �(�)Ψ ��(�)
�

�
x�����                    (18) 

is a matrix of order 2���� × 2 ����. 

Matrix D in equation (18) can be calculated by equation (2.10) in every interval � = 1, … , 2���. For 

example, when � = 2 and � = 3, matrix D is Identity matrix and for � = 2 and � = 4, we get: 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0

0 1 0 − �
�

��
0 0 0 0

0 0 1 0 0 0 0 0

0 − �
�

��
0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 − �
�

��

0 0 0 0 0 0 1 0

0 0 0 0 0 − �
�

��
0 1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

Also, 

� = [��,�, ��,�, … , ��,���, ��,�, ��,�, … , ��,���, … , �����,�, … , �����,���]�,         (19) 

Where 

��,� =< � (�), � �,�
� (�) >= ∫ �(�)� �,�

� (�)������,
�

�
                               (20)  

� = 1,2, … , 2���, � = 0,1, … , � − 1.  

Using the above equations, we get coefficient vector C as follow 

�� = ��� ��,                                                                    (21)  

3.3. Transformation matrix of Bernoulli wavelet-fraction to fractional-order Bernoulli 
functions 

Assume that �(�) ∈ ��[0,1]. Then, it can be expressed in terms of Bernoulli functions as follows 

�(�) ≃ ∑ ����
�(�)���

��� = ����(�) ,                                                    (22)  

where matrices � and ��(�) are 

��(�) = [��
�(�), ��

�(�), … , ����
� (�)]�,    � = [��, ��, … , ����]�,                  (23)  
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Similar to Equation (3.21), we can write 

�� = ��� ∗��,                                                                         (24)  

Where 

� ∗ =< � �, �� >= ∫ ��(�)���(�)������,
�

�
 � = [��, ��, … , ����]�     ,           (25)  

And 

�� = ∫ �(�)��
�(�)������,

�

�
 � = 0,1, … , � − 1                                            (26)   

Fractional-order Bernoulli wavelets can be expressed in terms of a fractional Bernoulli function as 
follows 

Ψ
�����×�
� (�) = Θ�����×� ��×�

� (�),                                                 (27) 

where Θ is the transformation matrix of Bernoulli fraction-order wavelet to fractional-order 

Bernoulli function. For example, suppose � = 2 and � = 3, then 

Ψ �(�) = [���
� (�), � ��

� (�), � ��
� (�), � ��

� (�), � ��
� (�), � ��

� (�)]�                       (28)  

��(�) = [��
�(�), ��

�(�), ��
�(�)]�,                                                  (29)  

which for 0 ≤ � < (
�

�
)

�

� 

� ��
� (�) = √2 = √2��

�(�),                                                 (29) 

� ��
� (�) = √6(−1 + 4� �) = √6��

�(�) + 4 √6��
�(�),  

� ��
� (�) = √10(1 − 12� � + 24� ��) = 3√10��

�(�) + 12 √10��
�(�) + 24 √10��

�(�),  

and for (
�

�
)

�

� < � ≤ 1  

� ��
� (�) = √2 = √2��

�(�),                                                 (30) 

� ��
� (�) = √6(−3 + 4� �) = − √6��

�(�) + 4 √6��
�(�), 

� ��
� (�) = √10(13 − 36� � + 24� ��) = 3√10��

�(�) − 12 √10��
�(�) + 24 √10��

�(�).  

Using the definition of fractional-order Bernoulli wavelet, we get � ��
� (�) for � = 2, � =

1, and � = 1 as follow 

� ��
� (�) = √2√12��(2��) = 2√6��(2��) = 2√6 �2�� −

�

�
� = √6(4�� − 1 )  

According to equation (2.9), it is easy to obtain 

��
�(�) = �� −

�

�
 ⟹ � � = �� +

�

�
  

��
�(�) = 1,  

Therefore, we have 

� ��
� (�) = √6(4��

�(�) + 1 ) = 4√6��
�(�) + √6��

�(�).  

The other wavelets can be calculated in the same way. 
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    Consider 

Θ =  �
Φ = [��,�]�×� ,          0 ≤ � < (

�

�
)

�

�    

Φ � = [��,�
� ]�×� ,           (

�

�
)

�

� ≤ � < 1 
                                      (31) 

And 

� =

⎣
⎢
⎢
⎢
⎢
⎡ √2 0 0

√6 4√6 0

3√10 12√10 24√10
0 0 0
0 0 0
0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 and � � =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 0

√2 0 0

− √6 4√6 0

3√10 −12 √10 24√10⎦
⎥
⎥
⎥
⎥
⎤

  

 

To calculate inverses of matrices Φ  and Φ �, we proceed as follow 

Φ = �
�
…
0

�

�����×�

      Φ �� = [��� ⋮ 0]�×� ����  

Φ � = �
0
…
�

�

�����×�

      Φ ���
= [0 ⋮ ���]

�×� ����.  

Generally, for � = 2 and arbitrary �, we get 

Θ =  �
Φ = [��,�]�����×� ,          0 ≤ � < (

�

�
)

�

�    

Φ � = [��,�
� ]�����×� ,           (

�

�
)

�

� ≤ � < 1 
  

where 

��,� =
�

�
���

�

⎩
⎨

⎧2� �

����
,                                         � = �

2��� ����
���

�
�

����
,              � < � ≤ �

0,                                                 ����

  

and 

��,�
� = �

0,                                                                 1 ≤ � ≤ �

(−1) ���������,�,                    � + 1 ≤ � ≤ 2 ����
   ,   � = 1,2, … , �, 

and 

�� = �
(��)���(�!)�

(��)!
���, � = 1,2, … , � − 1, � � = 1  

3.4. Fractional Integral Operational Matrix of Bernoulli Fractional-Order Wavelets 

Riemann-Liouville fractional integral of vector ��(�) in equation is given by 

����(�) ≃ � (�,�)(�)��(�)                                                        (32)  
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Where �(�,�) is the operational matrix of Riemann-Liouville fractional integral of order  �, which is 

� × �. 

If we use equation (2.9) and properties of operator �� for � = 0,1, … , � − 1,  we get 

����
�(�) = ���∑ ��

�
���������

��� � = ∑ ��
�
�����������

���   

= ∑ ��
�
�����

�(����)

�(������)

�
���                                                                    (33)  

= ∑ ��,�
(�,�)

������
���                                

where 

��,�
(�,�)

= ��
�
�

�(����)

�(������)
����.                                                               (34)  

Suppose that it is possible to expand ����� by the Bernoulli fractional-order polynomials with � 
sentences as follow 

����� ≃ ∑ ��,�
(�,�)

������
��� ��

�(�).                                                   (35)  

By placing equation (3.34) in equation (3.32) for � = 0,1, … , �, we get 

����
�(�) ≃ ∑ ��,�

(�,�)�
��� ∑ ��,�

(�,�)�
��� ��

�(�) = ∑ �∑ ��,�,�
(�,�)�

���
�

�
�

� ��
�(�)���

��� ,                   (36)  

where 

��,�,�
(�,�)

= ��,�
(�,�)

��,�
(�,�)

.                                                                          (37)  

Equation (3.35) can be written as follow 

����
�(�) ≃ �∑ ��,�,�

(�,�)
,�

��� ∑ ��,�,�
(�,�)

,�
��� … , ∑ ��,���,�

(�,�)
,�

��� ���(�),    � = 0,1, … , � − 1.  

Thus, we have 

�(�,�) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ��,�,�

(�,�)
��,�,�

(�,�)
⋯ � �,���,�

(�,�)

� ��,�,�
(�,�)

�

���
� ��,�,�

(�,�)
�

���
⋯ � � �,���,�

(�,�)
�

���

⋮ ⋮ ⋯ ⋮

� ����,�,�
(�,�)

���

���
� ����,�,�

(�,�)
���

���
⋯ � � ���,���,�

(�,�)
���

��� ⎦
⎥
⎥
⎥
⎥
⎥
⎤

.  

We calculate ��,�,�
(�,�)

, ��,�,�
(�,�)

, ��,�,�
(�,�)

 for � = 2, � = 3, and υ = 2: 

According equation (3.36), we can write 

��,�,�
(�,�)

= ��,�,�
(�,�)

= ��,�
(�,�)

��,�
(�,�)

.  

Based on equation (3.33) for ��,�
(�,�)

, we also have 

��,�
(�,�)

= ��,�
(�,�)

= ��
�
�

�(�)

�(�)
�� =

�

�
,  

where is the first Bernoulli’s number.  
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We calculate ��,�
(�,�)

 from equation (3.34) 

��,�
(�,�)

= ��,�
(�,�)

=
�

∫ ��
�(�).��

�(�).������
�

�

∫ ��. ��
�(�). ������

�

�
=

�

∫ ���
�

�

∫ ���� = 2 ×
�

�
=

�

�
,   

�

�
  

Therefore, ��,�,�
(�,�)

=
�

�
. 

Similarly, we have for ��,�,�
(�,�)

= ��,�,�
(�,�)

= ��,�
(�,�)

��,�
(�,�)

: 

��,�
(�,�)

= ��,�
(�,�)

= ��
�
�

�(�)

�(�)
�� =

�

�
,  

��,�
(�,�)

= ��,�
(�,�)

=
�

∫ ��
�(�).��

�(�).������
�

�

∫ ��. ��
�(�). ������

�

�
=

�

∫ (������
�

�
)�.���

�
�

∫ ��(�� − � � +
�

�

�

�
)�� =

�

���
× 0 = 0.  

So, ��,�,�
(�,�)

=
�

�
× 0 = 0 . 

The other components of this matrix are calculated in the same way. In this section, we evaluate the 
fractional integral operational matrix of Bernoulli fractional-order wavelets: 

��Ψ �(�) = ��Θ��(�) = Θ� ���(�) ≃ Θ� (�,�)��(�),                                 (38)  

From equations (3.37) and (3.38), it is concluded that 

�(�,�)Ψ �(�) = �(�,�)Θ��(�) ≃ Θ� (�,�)��(�). 

Therefore, fractional integral operational matrix of FBWs is acquired as follow 

�(�,�) ≃ Θ� (�,�)Θ��                                                                          (39) 

3.5. Fractional Derivative Operational Matrix of Bernoulli Fractional-Order Wavelets 

In this section, we apprise the fractional derivative operational matrix of order �. At first, we 
describe the following lemma. 

Lemma 3.6 Suppose that ��
�(�) is a Bernoulli fractional-order function, then  

� ���
�(�) = 0,    � = 0,1, … , �

�

�
� − 1, � > 0,   

Proof. This claim can be proved by properties of Caputo fractional derivative and equation (2.9).  

     Riemann-liouvill fractional derivative of vector ��(�) in equation (3.22) is described by 

� ���(�) ≃ � (�,�)��(�)                                                                         (40)  

where �(�,�) is fractional derivative operational matrix of order � × � . 

We find by using equation (2.9) and properties of Caputo fractional derivative for � = �
�

�
, … , � −

1� that 

� ���
�(�) = � ��∑ ��

�
���������

��� � = ∑ ��
�
������ �����

���   = ∑ ��
�
�����

�(����)

�(������)
 �����   = =�

���
�

�
�

∑ ��,�
( �,�)

������

���
�

�
�

                                                        (41) 
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where 

��,�
( �,�)

= ��
�
�

�(����)

�(������)
 ����.  

Imagine that we can expand ����� by � sentence of Bernoulli fractional-order functions as follow 

����� ≃ ∑ ��,�
(�,�)���

��� ��
�(�).                                                    (42)  

Applying equations (3.41) and (3.42), we find out 

� ���
�(�) ≃ ∑ ��,�

(�,�)�

���
�

�
�

∑ ��,�
(�,�)�

��� ��
�(�) = ∑ �∑ ��,�,�

(�,�)�

���
�

�
�

� ��
�(�)���

��� ,              (43)  

��,�,�
(�,�)

= ��,�
(�,�)

��,�
(�,�)

,  

If we rewrite the equation (3.43) as a vector, we obtain 

� ���
�(�) ≃ � ∑ ��,�,�

(�,�)�

���
�

�
�

, ∑ ��,�,�
(�,�)�

���
�

�
�

, … , ∑ ��,���,�
(�,�)�

���
�

�
�

� ��(�), � = �
�

�
� , … , � − 1.      (44)  

Hence, we have 

�(�,�) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0

�
�

�

�
�,�,�

�

�
�

(�,�)
�

�
�

�
�,�,�

�

�
�

(�,�)
⋯ �

�
�

�
�,���,�

�

�
�

(�,�)

⋮ ⋮ ⋯ ⋮

� ��,�,�
(�,�)

�

���
�

�
�

� ��,�,�
(�,�)

�

���
�

�
�

⋯ � � �,���,�
(�,�)

�

���
�

�
�

⋮ ⋮ ⋯ ⋮

� ����,�,�
(�,�)

���

���
�

�
�

� ����,�,�
(�,�)

���

���
�

�
�

⋯ � � ���,���,�
(�,�)

���

���
�

�
� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.  

 

In this section, we obtain the fractional integral operational matrix of Bernoulli fractional-order 
wavelets: 

� �Ψ �(�) ≃ � (�,�)Ψ �(�),                                                           (45)  

where � (�,�) is called the fractional integral operational matrix of Bernoulli fractional-order 
wavelets. 

     Using equations (3.26) and (3.40), we find that 

� �Ψ �(�) = � �Θ��(�) = Θ� ���(�) ≃ Θ� (�,�)��(�),                              ( 46)  

From (3.45) and (3.46), the following relations can be concluded 

� (�,�)Ψ �(�) = � (�,�)Θ��(�) ≃ Θ� (�,�)��(�). 

Consequently, fractional derivative operational matrix of FBWs obtain as follow 

� (�,�) ≃ Θ� (�,�)Θ��.                                                                        (47)  
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3.7. The upper limit of error for the fractional integral operational matrix of fractional-order 
Bernoulli wavelets 

In this section, we obtain an upper error bound for the operational matrix of the fractional integrals 

�(�,�)and �(�,�). Besides, we show that the error vectors � �
(�)

and ���
(�)

 approach zero when the 

number of Bernoulli fractional-order functions increases. To find these errors, we repeat the 
following theorems.  

Theorem 3.8 Imagine � ∈ ��[0,1]. It is possible to write f by infinitive series of Bernoulli 

fractional-order wavelets and uniformly convergent series as follow 

�(�) = ∑ ∑ ��� ���
� (�)�

��� .�
���   

Since the reduced series of Bernoulli fractional-order wavelets is an approximate solution of a 

system, the error function �(�) for �(�) exists as follow: 

�(�) = ��(�) − ∑ ∑ ��� ���
� (�)���

���
����

��� �  

By placing � = �� ∈ [0,1], we can determine the absolute value of the error in ��. 

     The following theorem gives an error bound for the approximate solution by using series of 

����. Before that, we have to provide the following definition. 

Taylor's original formula [32]. Assume that � ���(�) ∈ (0,1] for � = 1,2, … , �, so we have: 

�(�) = ∑
���

�(����)

���
��� � ���(0�) +

���

�(����)
� ���(�),                               (48)  

where 0 < � ≤ �, ∀� ∈ (0,1]. Also, we have 

��(�) − ∑
���

�(����)

���
��� � ���(0�)� ≤ ��

���

�(����)
,                                        (49)  

Where ����∈(�,�]|� ���(�)| ≤ ��. When � = 1, the original Taylor formula is reduced to the 

Taylor Classic Formula. 

Theorem 3.9. Suppose that � ���(�) ∈ (0,1] for � = 1,2, … , �, (2� + 1 )� ≥ 1, (�� = 2 ����) and 

��
� = �������

�(�), ��
�(�), … , ����(�)

� �. If ��(�) = �� ��(�) is the best approximation derived 

from ��
� on the interval [

���

���� ,
�

����], then approximate solution error bound of ��� (�) can be 

obtained by FBWs series on [0,1] as follow [6] 

‖� − ��� ‖ ≤
����∈[�,�]��

���(�)�

�(����)�(����)�
                                                        (50)  

Proof. We define  

��(�) = ∑
���

�(����)
���
��� � ���(0�).  

Based on the above definition, we get 

|�(�) − ��(�)| ≤
���

�(����)
����∈��,�

|� ���(�)|  

where 
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��,� = �
���

���� ,
�

����
�.  

Since ��(�) = �� ��(�), the best approximation derived from ��
� on the interval �

���

���� ,
�

����
� and 

∑
���

�(����)
���
��� � ���(0�) ∈ ��

�, thus  

‖� − ��� ‖
��[�,�]
� = ‖� − � �Ψ �‖

��[�,�]
� = ∑ ‖� − � ���‖

���
���

����,
�

�����

�����

���  ≤    ∑ ‖� −����

���

��‖
���

���

����,
�

�����

� ≤ ∑ ∫ �
���

�(����)
����∈��,�

|� ���(�)|�
�

������

�

����
���

����

����

��� ≤

∫ �
���

�(����)
����∈��,�

|� ���(�)|�
�

������
�

�
 ≤  

�

�(����)�(����)�
(����∈[�,�]|�

���(�)|)�  

The proof  is complete if we take the second root. 

The last theorem proves that the approximations of Bernoulli fractional-order wavelets �(�) is 

convergent. Now, we try to find the upper bound of �(�,�). Furthermore, we show that the error 

vector of � �
(�)

 approaches zero when the number of FBws increases. At first, we explain the 

following theorems. 

Theorem 3.10. Suppose Y is a subspace of the Hilbert space H so that ���� < ∞  and ��, ��, … , ��  

is a basis for Y. Also, imagine z is an arbitrary member of H and �∗ is the best approximation of z 
derived from Y. Based on [13], we have 

‖� − � ∗‖�
� =

�(�,��,��,…,��)

�(��,��,…,��)
,  

where 

�(�, ��, ��, . . . , �� ) = �

< �, � � > < �, � � > . . . < �, �� >
< � �, � > < � �, �� > . . . < ��, �� >

⋮ ⋮ ⋮ ⋮
< �� , � > < � � , �� > . . . < �� , �� >

�  

Theorem 3.11. Assume that � ∈ ��[0,1] is approximated by ��(�) as follow 

�(�) ≃ � �(�) = ∑ ����
����

��� = ����(�).  

Remember that �� and ��(�) were defined in equation (3.22). By considering 

��(�) = ∫ [�(�) − � �(�)]��

�
��,  

we obtain 

lim
�⟶�

��(�) = 0. 

The error vector � �
(�)

of the operational matrix �(�,�)can be calculated as follow 

� �
(�)

= �(�,�)Ψ � − � �Ψ �,   � �
(�)

= �

���

���

⋮
������(���)

�                                 (51)  

From equation (3.43) by the assumption �����, we conclude 



156 Shaban Mohammadi et al. / Computational Sciences and Engineering 2(2) (2022) 143-163 156 

 

 

����� ≃ ∑ � �,�
(�,�)

� �
�(�),                                                   (52)���

���   

where � �,�
(�,�)

was calculated with the best approximation. Using theorem (3.10), we find 

������ − � � �,�
(�,�)

� �
�(�)

���

���

�

�

= �
�(�����, � �

�(�), � �
�(�), … , � ���

� (�))

�(� �
�(�), � �

�(�), … , � ���
� (�))

�

�
�

                      (53) 

Based on (3.32)-(3.35) for 0 ≤ � ≤ � − 1 , we get 

‖�̃��‖� = ���� �
�(�) − ∑ �∑ � �,�,�

(�,�)�
��� ����

��� � �
�(�)�

�
≤ ∑ ��

�
�

�(����)

�(������)
 ����

�
��� ������ −

∑ � �,�
(�,�)

� �
�(�)���

��� �
�

≤ ∑ ��
�
�

�(����)

�(������)
 ����

�
��� �

�������,� �
�(�),� �

�(�),…,� ���
� (�)�

��� �
�(�),� �

�(�),…,� ���
� (�)�

�

�

�

,  

Now, we can find error vector � �
(�)

of fractional integral operational matrix of Bernoulli fractional-

order wavelets. Using equations (3.26) and (3.39), we find 

� �
(�)

= �(�,�)Ψ � − � �Ψ � = Θ� (�,�)Θ��Θ�� − � �Θ�� = Θ� (�,�)�� − Θ� ��� = Θ���
(�)

.  

Therefore, we obtain 

� �
(�)

= Θ���
(�)

.                                                                       (55)  

According to the above discussion and Theorem 2, we can conclude that the bases of vectors � �
(�)

 

and ���
(�)

 approach zero when the number of Bernoulli fractional-order functions increases. 

4. The wavelets method for solving differential equations of Fokker-Planck-Kolmogorov 
fractional order 

For the approximate solution of the Fokker-Planck-Kolmogorov fractional differential equation, the 
Bernoulli wavelet method is explained as follows:  

D�
�u −

�

�
σ�x� ���

��� + (β − 2σ �)x
��

��
+ (β − σ �)u = R(x, t)                     (56) 

Initial conditions:  

u(0, x) = ��(�), ��(0, �) = ��(�),    0 ≤ � ≤ 1 

Boundary conditions:  

u(�, 0) = ��(�),    ��(�, 1) = ��(�),    0 ≤ � ≤ 1 
  �(�, �) Is the right-side function of the equation given for each equation. 
Consider: 

���(�,�)

��� ��� ≈ Ψ �×�
� (x)C�×�

 Ψ �×� (t)                                                          (57) 

 
By twice integrating with t from both sides of equation (57) we have: 
 

���(�,�)

��� ≈ f�
�(x) + tf�

�(x) + Ψ �×�
� (x)C�×�

 (I�Ψ �×� (t))                        (58) 

 
By twice integrating with x from both sides of equation (58) we have: 
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� �(�,�)

�� =
� �(�,�)

�� |��� + f �
�(x) + f �

�(0) + t �f�
�(x)−f �

�(0)� +   

(IH�×�
� (x))�Ψ �×�

 (I�Ψ �×� (t))                                                                         (59) 

  u(t, x) ≈ u(t, 0) + x
� �(�,�)

�� |��� + �f�(x) − f �(0) − xf�
�(0)� + t �f�(x) − f �(0) − xf�

�(0)� +

(I�Ψ �×�
 (x))�C�×�

 (I�Ψ �×� (t))                                         (60) 
 
Now by applying the boundary conditions and putting x = 1, we will have: 
 

u(t, 1) ≈ u(t, 0) + x
� �(�,�)

�� |��� + �f�(1) − f �(0) − xf�
�(0)� + t �f�(1) − f �(0) − f �

�(0)� +

(I�Ψ �×�
 (1))�C�×�

 (I�Ψ �×� (t))                                              (61) 
Therefor: 
 

� �(�,�)

�� |��� ≈ g�(t) − g �(t) − �f�(1) − f �(0) − f �
�(0)� − t �f�(1) − f �(0) − f �

�(0)� −

�I�Ψ �×�
 (1)�

�
C�×�

 (I�Ψ �×� (t)) = K(t)                                               (62) 
 
Now by placing K(t) in Equation (60) we have: 
 

u(t, x) ≈ g�(t) + xK(t) + �f�(x) − f �(0) − xf�
�(0)� + t �f�(x) − f �(0) − xf�

�(0)� +

�I�Ψ �×�
 (x)�

�
C�×�

 (I�Ψ �×� (t))                                                         (63) 

Now we need the fraction derivative u (t, x) according to Equation (56). From Equation (62) we 
derive the order fraction α with respect to t: 

D�
�u(t, x) ≈ D�

�g�(t) + xD�
�K(t) + �I�Ψ �×�

 (x)�
�

C�×�
 (I���Ψ �×� (t))            (64) 

And we will have: 

D�
�K(t) = D�

�g�(t)−D �
�g�(t) − �I�Ψ �×�

 (1)�
�

C�×�
 (I���Ψ �×� (t))               (65) 

Now convert all approximations (≈) to equals (=), and place equations (58), (59), (63) and (65) in 
Equation (45), the following linear equation is obtained: 
 

D�
�g��t�� + x�D�

�
 
K�t�� + �I�Ψ �×�

 (x�)�
�

C�×�
 (I���Ψ �×� (t)) −

�

�
σ�x�

�(f�
�(x�) + t �f�

�(x�) +

Ψ �
�×�
 

(x�)C�×�
 (Ψ �

�×�
�t��)) + (β − 2σ �)x�(K�t�� + f �

�(x�) − f �
�(0) + t ��f�

�(x�)−f �
�(0)� +

(IΨ  
�×�
 (x�))�C�×�

 (Ψ �
�×�

�t��)) + (β − σ �)(g��t�� + x�K�t�� + �f�(x�) − f �(0) − x�f�
�(0)� +

t��f�(x�) − f �(0) − x�f�
�(0)� + �I�Ψ �×�

 (x�)�
�

C�×�
 (I�Ψ �×� �t��) = R�x�, t��   (66) 

 
5- Solving numerical examples 
Numerical solutions and errors are calculated, evaluated, and provided in tables after evaluating 
certain numerical instances with conditions of varying initial values. The MATLAB software is 
used to solve all of the examples.  
 
Example 1: In equation 1, by placing, � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2 , 

Initial conditions: 

u(0, x) = 0, ��(0, �) = 0,      0 ≤ � ≤ 1 

Boundary conditions: 

u(�, 0) = 0,    ��(�, 1) = 0,    0 ≤ � ≤ 1 

The right-side functions of the equation: 
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�(�, �) = �
2����

�(3 − � )
+

1

2
(����)� + (� − � �)��� ���(��) + (� − 2(�) �)���� ���(��) 

The accurate answer of this equation in example (1) is �(�, �) = ��sin(��). Example (1) is solved 

by the Bernoulli wavelet method for , � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2and its error is 
presented in Table 1. 

Table 1: example 1 error,by placing, � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2 

     α=1.9       α=1.7          α=1.5        α=1.3 α=1.1  (x,t) 

2.08*�����  6.32*10���  5.10*10���  2.18*10���  5.11*10���  (1.13,1.13)  

4.06*����  5.47*10��  2.34*10��  1.84*10��  4.02*10��  (3.13,3.13)  

5.28*����  4.19*10��  1.82*10��  1.52*10��  3.64*10��  (5.13,5.13)  

3.64*����  2.94*10��  3.01*10��  2.01*10��  2.74*10��  (7.13,7.13)  

4.15*����  6.38*10��  4.62*10��  3.84*10��  3.19*10��  (9.13,9.13)  

2.07*����  3.55*10��  2.14*10��  1.04*10��  1.59*10��  (11.13,11.13)  

 
 

 
Figure 2: Relation of B and error for example 1 for � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2 

 
 

 
Figure 3: Approximate and exact solution, respectively for example 1 for � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2 

 

The method of numerical solution for � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2is presented in Table 

(2). 

Table 2. the numerical solution of example 1 py placing , � = 1.1  , � = 1 , � = 0.2, � = 3 , � = 2 

   α=1.9      α=1.7     α=1.5      α=1.3 α=1.1  (x,t) 

2.53*����  2.53*10��  2.54*10��  2.54*10��  2.55*10��  (1.13,1.13)  

3.82*����  3.82*10��  3.83*10��  3.83*10��  3.84*10��  (3.13,3.13)  

1.62*����  1.62*10��  1.63*10��  1.63*10��  1.64*10��  (5.13,5.13)  

1.76*����  1.76*10��  1.78*10��  1.78*10��  1.79*10��  (7.13,7.13)  

2.11*����  2.11*10��  2.12*10��  2.12*10��  2.13*10��  (9.13,9.13)  

3.16*����  3.17*10��  3.17*10��  3.18*10��  3.18*10��  (11.13,11.13)  
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Example 2: the numerical solution of the following equation: 

In equation (1), by placing   α = 1.1  , β = 0.5 , σ = 0.2, m = 3 , k = 2, 
Initial conditions: 

u(0, �) = 0, ��(0, �) = 0,      0 ≤ � ≤ 1 

Boundary conditions: 

u(�, 0) = t�,    ��(�, 1) = ���,    0 ≤ � ≤ 1 

The right-side functions of the equation: 

�(�, �) = �
�(4)

�(4 − � )
���� −

1

2
������ + (� − 2� �)��� + (� − � �)��� �� 

The accurate response to this equation in example (2) is�(�, �) = ����   . Example (2) is solved by 

the Bernoulli wavelet method for � = 1.1  , β = 0.5 , σ = 0.2, m = 3 , k = 2 and its error has been 
shown in Table (3).  

Table 3. The error of example 2, by placing � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 

    α=1.9      α=1.7      α=1.5       α=1.3 α=1.1  (x,t) 

5.55*����  4.99*10��  5.19*10��  5.41*10��  452*10��  (1.13,1.13)  

4.34*����  4.47*10��  4.63*10��  4.12*10��  3.74*10��  (3.13,3.13)  

3.17*����  3.12*10��  5.33*10��  3.04*10��  2.91*10��  (5.13,5.13)  

2.37*����  2.39*10��  3.55*10��  2.14*10��  2.74*10��  (7.13,7.13)  

4.20*����  4.19*10��  4.12*10��  3.01*10��  3.21*10��  (9.13,9.13)  

1.33*����  1.67*10��  2.01*10��  1.44*10��  1.18*10��  (11.13,11.13)  

 
 

 
Figure 4: Relation of B and error for example2 for, � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 

 
 

  
Figure 5: Approximate and exact solution, respectively example2 for, � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 
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In Table (4), the numerical solution method for � = �. �  , � = �. � , � = �. �, � = � , � = � has 
been shown. 

Table 4: the numerical solution of example 2 by placing � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 

    α=1.9      α=1.7       α=1.5 α=1.3 α=1.1  (x,t) 

5.52*����  5.53*10��  5.53*10��  5.54*10��  5.55*10��  (1.13,1.13)  

2.81*����  2.82*10��  2.82*10��  2.83*10��  2.84*10��  (3.13,3.13)  

1.51*����  1.53*10��  1.53*10��  1.54*10��  1.55*10��  (5.13,5.13)  

3.25*����  3.25*10��  3.26*10��  3.27*10��  3.28*10��  (7.13,7.13)  

1.10*����  1.11*10��  1.11*10��  1.12*10��  1.13*10��  (9.13,9.13)  

3.15*����  3.16*10��  7.16*10��  7.17*10��  7.18*10��  (11.13,11.13)  

 

Example 3: the numerical solution of the following equation: 

In equation (1), by placing , � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 
Initial conditions: 

u(0, �) = 0, ��(0, �) = 0,      0 ≤ � ≤ 1 

Boundary conditions: 

u(�, 0) = 0,    ��(�, 1) = ������� ,    0 ≤ � ≤ 1 

The right-side functions of the equation: 

�(�, �) = (
�(�)

�(���)
���� + (� − � �)��)����� − � �������� (2�) + (� − � �)������ (2�)  

The accurate response to this equation in example (3) is�(�, �) = �������  . Example (3) is solved 

by the Bernoulli wavelet method for � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 and its error has 
been shown in Table (5).  

Table5. The error of example 3, by placing � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.1 (x,t) 

5.60*���� 4.84*10�� 5.19*10�� 5.85*10�� 352*10�� (1.13,1.13) 

4.23*���� 4.55*10�� 4.63*10�� 4.24*10�� 3.18*10�� (3.13,3.13) 

3.27*���� 3.11*10�� 5.02*10�� 3.11*10�� 2.91*10�� (5.13,5.13) 

2.21*���� 2.44*10�� 3.44*10�� 2.20*10�� 2.45*10�� (7.13,7.13) 

4.37*���� 4.45*10�� 4.19*10�� 3.21*10�� 3.39*10�� (9.13,9.13) 

1.47*���� 1.55*10�� 2.11*10�� 1.59*10�� 1.71*10�� (11.13,11.13) 

  
 

  
Figure 6: Relation of B and error for example3 for, � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 
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Figure 7: Approximate and exact solution, respectively for example3 for, � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 

  
In Table (6), the numerical solution method for � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2has been 
shown. 

  
Table 6: the numerical solution of example 3by placing � = 1.1  , � = 0.5 , � = 0.2, � = 3 , � = 2 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.1 (x,t) 

5.44*���� 5.78*10�� 5.77*10�� 5.42*10�� 5.47*10�� (1.13,1.13) 

2.79*���� 2.74*10�� 2.75*10�� 2.76*10�� 2.75*10�� (3.13,3.13) 

1.47*���� 1.72*10�� 1.54*10�� 1.67*10�� 1.62*10�� (5.13,5.13) 

3.33*���� 3.36*10�� 3.36*10�� 3.33*10�� 3.31*10�� (7.13,7.13) 

1.19*���� 1.22*10�� 1.01*10�� 1.28*10�� 1.19*10�� (9.13,9.13) 

3.01*���� 3.43*10�� 7.42*10�� 7.37*10�� 7.63*10�� (11.13,11.13) 

  

6. Discussion and conclusion 

In this paper, we employ the Bernoulli wavelet method to solve the Fokker-Planck-Kolmogorov 
time fractional-order differential equations. Accordingly, it is essential to be familiar with fractional 
calculus and wavelets. So, we initially introduced the Bernoulli and Bernoulli fractional-order 
wavelets, the Bernoulli polynomial, and Bernoulli fractional-order functions. In the following, we 
continued by introducing fractional integrals and derivatives and described approximation of 
functions by Bernoulli fractional-order wavelets and functions. Then, we obtained the 
transformation matrix of the Bernoulli fractional-order wavelet to Bernoulli fractional-order 
functions. Finally, we specified the operational matrix of the fractional integral and derivative 
Bernoulli fractional-order wavelet and the upper error bound for the operational matrix of Riemann-
Leouville fractional integral and operational matrix of fractional integral of Bernoulli fractional-
order wavelet. After introducing the operational matrix of the Bernoulli wavelet fractional integral, 
we used it to solve the Fokker-Planck-Kolmogorov fractional differential equations. After 
numerically solving the equation, we analyzed the error between the exact answer and the 
approximate answer obtained from the numerical method 
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