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 The purpose of this paper is to present a wavelet method for 

numerical solutions Fokker-Planck-Kolmogorov time-fractional 

differential equations with initial and boundary conditions. The 

authors was employed the Bernoulli wavelets for the solution of 

Fokker-Planck-Kolmogorov time-fractional differential equation. We 

calculated the Bernoulli wavelet fractional integral operation matrix 

of the fractional order and the upper error boundary for the Riemann‐ 
Liouville fractional integral operation matrix and the Bernoulli 

wavelet fractional integral operation matrix. The Fokker-Planck-

Kolmogorov time-fractional differential equation is converted to the 

linear equation using the Bernoulli wavelet operation matrix in this 

technique. This method has the advantage of being simple to solve. 

The simulation was carried out using MATLAB software. Finally, 

the proposed strategy was used to solve certain problems. the 

Bernoulli wavelet and Bernoulli fraction of the fractional order, the 

Bernoulli polynomial, and the Bernoulli fractional functions were 

introduced. Explaining how functions are approximated by fractional-

order Bernoulli wavelets as well as fractional-order Bernoulli 
functions. The Bernoulli wavelet fractional integral operational 

matrix was used to solve the Fokker-Planck-Kolmogorov fractional 

differential equations. The results for some numerical examples are 

documented in table and graph form to elaborate on the efficiency 

and precision of the suggested method. The results revealed that the 

suggested numerical method is highly accurate and effective when 

used to Fokker-Planck-Kolmogorov time fraction differential 

equations 
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1. Introduction   

Fractional Differential Equations are the generalization of ordinary differential equations of 

arbitrary order (non-integer). In recent years, the application of fractional differential equations has 

increased in many fields. Therefore, analyzing and solving these equations has become one of the 

researchers' concerns. It is not always possible to obtain a closed-form solution for these equations, 

and even in many cases, it is impossible. Therefore, researchers have tended to use approximate 

methods to solve this type of problem[3].In the Mid-Nineteenth Century, Riemann and Liouville 

introduced the concept of Differential Calculus. But Oldham and Spanier published the first book in 

this context in 1974. It did not take long that the number of publications on fractional calculus 

experienced a rapid increase. The reason is that many physical systems show fractional-order 

dynamics, meaning that their behavior is under fractional differential equations control [1]. 

Fractional differential equation is the generalization of ordinary differential equation to arbitrary 

order (non-integer). Everybody can find the history of fractional differential equations appearance 

in [2]. Many researchers are interested in fractional differential equations because these equations 

have a high ability to model complex phenomena such as economics [10], statistical and quantum 

mechanics [11], solid mechanics [12], and joint surface dynamics between rigid layers and soft 

nanoparticles [13]. Moreover, researchers are eager to improve numerical methods to solve them. 

These methods include Fourier transformation [14], eigenvector expansion [15], Laplace transforms 

[16], Edomian decomposition method [17], finite difference method [18], power series method [19], 

fractional differential conversion method [20], and homotopic analytical method [21]. Meanwhile, 

orthogonal functions have a particular place especially facing various problems of dynamical 

systems. Researchers have employed orthogonal functions to solve many fractional differential 

equations. The importance of orthogonal functions is that they can reduce a differential equation 

into an algebraic equation using derivative or integral operational matrices. Among orthogonal 

polynomials, the transferred Legender polynomials (𝑝𝑚(𝑡),𝑚 = 0,1,2,… ,0 ≤ 𝑡 ≤ 1) have the best 

behavior and are more computationally efficient [22] and [23].Tyler and Bernoulli polynomials 

(𝛽𝑚(𝑡),𝑚 = 0,1,2,… ,0 ≤ 𝑡 ≤ 1) are not orthogonal. However, it is possible to calculate their 

integral operational matrix. Since the integral of multiplying two Tyler vectors is a kind of Hilbert's 

bad matrix [24], the applications of the Tyler series are limited. In statistical mechanics, the Fokker-

Planck equation is a partial differential equation that accounts for the time evolution of the density 

probability velocity function for the particles influenced by drag and random forces. Brownian 

motion is described by this equation, which may be extended to include observations expect for 

velocity [28, 29]. For the first time, a mathematician and physicist, Joseph Fourier, proposed the 

idea of representing a function in terms of a complete set of functions. Fourier proved that it is 

possible to represent a function 𝑓(𝑡) concisely using axes made up of a set of sine-like functions. In 

other words, Fourier showed that it is feasible to represent a function 𝑓(𝑡) by an infinite sum of sine 

and cosine functions in in the form ofsin(𝑎𝑡) and cos (𝑎𝑡). Fourier bases became essential tools 

with many applications in science. But over time, the weakness of the Fourier foundations became 

apparent. Scientists found that Fourier bases and the representation of sine-like functions for 

complex theoretical image signals are not ideal. For instance, they cannot efficiently display 

transitory structures such as existing boundaries in images. They also observed that the Fourier 

transform is applicable only for elementary functions. In 1957, Har was the first to point out the 

wavelets. Generally, the goal of wavelet theory is to find new bases for 𝐿2(ℝ). In this paper, we 

defined a new set of fractional functions. This set is called Bernoulli fractional-order wavelets and 
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constructed on Bernoulli wavelets by changing 𝑡 to 𝑥𝛼[30]. We show Bernoulli fractional-order 

wavelets 𝜓𝑛,𝑚(𝑥
𝛼) with𝜓𝑛,𝑚

𝛼 (𝑥). Furthermore, we obtained the transformation matrix of Bernoulli 

fractional-order wavelets to Bernoulli fractional-order functions. Finally, we found the operational 

matrix of the Bernoulli fractional-order wavelet integral. Previous research has suggested a 

technique for solving two-dimensional Fokker-Planck equations for non-hybrid continuous systems 

using the finite difference approach, and the proposed method’s stability and accuracy have been 

investigated. Many other articles are written on the numerical solution of Fokker-Planck equations 

[26, 27]. The Bernolii wavelet method is utilized in this study to solve the Fokker-Planck-

Kolmogorov time-fractional differential equations in the following way[25]:   

𝐷𝑡
𝛼𝑢 −

1

2
𝜎2𝑥2

𝜕2𝑢

𝜕𝑥2
+ (𝛽 − 2𝜎2)𝑥

𝜕𝑢

𝜕𝑥
+ (𝛽 − 𝜎2)𝑢 = 𝑅(𝑥, 𝑡)                             (1) 

Initial conditions: 

u(0, x) = 𝑓0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑓1(𝑥),    0 ≤ 𝑥 ≤ 1  
Boundary conditions:  

u(𝑡, 0) = 𝑔0(𝑡),    𝑢𝑡(𝑡, 1) = 𝑔0(𝑡),    0 ≤ 𝑡 ≤ 1 
𝑅(𝑥, 𝑡) Is the right side function of the equation, which is given for each equation. 

2. Preliminaries: 

2.1. Fractional order integral and Fractional Order Derivative 

The Riemann ‐ Liouville fractional integral operator of order 𝜐 of the function 𝑓(𝑡) ∈ 𝐶𝜇;  𝜇 ≥ −1 

is defined as follows [7]: 

𝐼𝜐 𝑓(𝑡) = {

1

Γ(𝜐)
∫

𝑓(𝑠)

(𝑡−𝑠)1−𝜐
𝑑𝑠

𝑡

0
=

1

𝛤(𝜐)
𝑡𝜐−1 ∗ 𝑓(𝑡)   ; 𝜐 > 0

𝑓(𝑡)                                                                       ; 𝜐 = 0,
                                                  (2) 

where 𝑡𝜐−1*f(t)  is the convolution product of the two functions 𝑡𝜐−1 and f(t). 

The following formula is the definion of Riemann ‐ Liouville fractional integral operator which is 

the generalization of the Cauchy’s formula for integrals, 

∫ 𝑑𝑥1
𝑥1

𝑎
∫ 𝑑𝑥2
𝑥2

𝑎
…∫ 𝑑𝑥𝑛−1

𝑥𝑛−1

𝑎
=

1

(𝑛−1)!
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝑛
𝑑𝑡.

𝑥

𝑎
                                    (3)  

For Riemann ‐ Liouville fractional integral, we have [7] 

 

(𝐼𝜐1𝐼𝜐2𝑓)(𝑡) = 𝐼𝜐1+𝜐2𝑓(𝑡);      𝜐1, 𝜐2 ≥ 0  

And 

(𝐼𝜐1𝐼𝜐2𝑓)(𝑡) = (𝐼𝜐2𝐼𝜐1𝑓)(𝑡),  

𝐼𝜐𝑡𝛽 =
Γ(𝛽+1)

Γ(𝛽+𝜐+1)
𝑡𝜐+𝛽;       𝛽 > 0,                                                    (4)  

Riemann ‐ Liouville fractional integral is a linear operator, i.e 

𝐼𝜐(𝜆1𝑓(𝑡) + 𝜆2𝑔(𝑡)) = 𝜆1𝐼
𝜐𝑓(𝑡) + 𝜆2𝐼

𝜐𝑔(𝑡),  

where 𝜆1 and 𝜆2 are constants. The Caputo fractional derivative of order υ of the function 

f(t)∈𝐶−1
𝑛 is ([8-9]) 
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𝐷𝜐𝑓(𝑡) =  
1

Γ(𝑛−𝜐)
∫

𝑓(𝑛)(𝑠)

(𝑡−𝑠)𝜐+1−𝑛
𝑑𝑠;      𝑛 − 1 < 𝜐 ≤ 𝑛, 𝑡 > 0, 𝑛 ∈ ℕ

𝑡

0
.  

Caputo fractional derivative satisfies in two relations below: 

(𝐷𝜐𝐼𝜐𝑓)(𝑡) = 𝑓(𝑡)  

(𝐷𝜐𝐼𝜐𝑓)(𝑡) = 𝑓(𝑡) − ∑ 𝑓(𝑖)𝑛−1
𝑖=0 (0)

𝑡𝑖

𝑖!
,                                             (5)         

equation is a special state of the following equation 

𝐷𝜐𝐼𝜐𝑓(𝑡) = 𝐼𝛼𝐼𝑚−𝛼𝑓(𝑚)(𝑡) = 𝐼𝛼−𝛽 (𝐼𝑛𝑓(𝑛)(𝑡)) = 𝐼𝛼−𝛽𝑓(𝑡) − ∑
𝑓(𝑖)(0)

Γ(𝛼−𝛽+𝑖−)𝛽

𝑛−1
𝑖=0 , 𝛼 >

𝛽,                                                    (6)  

where 𝑛 − 1 < 𝛼 ≤ 𝑛 𝑎𝑛𝑑 𝑚 − 1 < 𝛽 < 𝑚. 

Some properties of the Caputo fractional derivatives for  𝑓(𝑥) ∈ 𝐶1[0,1], 0 < 𝜐 ≤ 1 for are listed 

below and you can find their proofs in [4]. 

1. (𝐼𝜐𝐷𝜐𝑓)(𝑡) = 𝑓(𝑡) − 𝑓(0), 

2. 𝐷𝑛(𝐷𝜐𝑓(𝑡)) = 𝐷𝜐(𝐷𝑛𝑓(𝑡)), 

3. 𝐷𝑛(𝐷𝜐𝑓(𝑡)) = 𝐷𝑛+𝜐𝑓(𝑡), 

4. 𝐷𝛽𝑓(𝑡) = 𝐼𝑚−𝛽𝐷𝑚𝑓(𝑡);  𝑚− 1 < 𝛽 ≤ 𝑚, 

5. 𝐷𝜐𝐶 = 0, 

6. 𝐼𝜐𝑡𝛽 = 0 when 𝜐 ∈ ℕ0 and 𝛽 < 𝜐, otherwise 𝐼𝜐𝑡𝛽 =
Γ(𝛽+1)

Γ(𝛽+𝜐+1)
𝑡𝜐+𝛽, 

7. 𝐷𝜐(𝜆1𝑓(𝑡) + 𝜆2𝑔(𝑡)) = 𝜆1𝐷
𝜐𝑓(𝑡) + 𝜆2𝐷

𝜐𝑔(𝑡), 

C, 𝜆1 and 𝜆2 are constants. 

3- Research method 

3-1- Bernolii wavelets and  

Bernolii wavelets on the interval [0.1) is defined as follows[4]: 

𝜓𝑚,𝑛(𝑡) = {
2
𝑘−1

2 �̅� 𝑚(2
𝑘−1𝑡�̂�)             𝑡𝜖[𝜉1, 𝜉2)  

  
0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 (7) 

Or  

�̅� 𝑚(𝑡) =   {

1

√
(−1)𝑚−1𝑚!

(2𝑚)!
𝛼2𝑚

 𝛽𝑚(𝑡)                           𝑚 > 0 

  
1                                             𝑚 = 0           

                              (8) 

where𝜉1 =
�̂�

2𝑘−1
  ، 𝜉2 =

�̂�+1

2𝑘−1
    ، 𝑚 = 0,1,2,…𝑀 − 1 and n=1,2,…, 2𝑘−1,  

Bernolii polynomials are defined as follows[5]: 

𝛽𝑚(𝑡) = ∑ (𝑚
𝑖
)𝑡𝑖𝛼𝑚−𝑖

𝑚
𝑖=0  ,i=0,1,…,m,                                          (9) 

𝑡

𝑒𝑡−1
= ∑

𝑡𝑖

𝑖!
𝛼𝑖

∞
𝑖=0  ,  𝛼0 = 1 , 𝛼1 =

−1

2
 , 𝛼2 =

1

6
 , 𝛼4 =

−1

30
  , 𝛼2𝑖+1 = 0, 𝑖 = 1,2,3,…        (10) 
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Figure1. Bernoulli wavelet with M=4 ,k=2 

 

3-2-Functions Approximation 

If {𝜓10
𝛼 (𝑥), 𝜓11

𝛼 (𝑥), … ,𝜓
2𝑘−1𝑀−1
𝛼 (𝑥)} ⊂ 𝐿2[0,1] is a set of fractional-order Bernolii wavelets, then 

𝑌 = 𝑆𝑝𝑎𝑛{𝜓10
𝛼 (𝑥),𝜓11

𝛼 (𝑥),… ,𝜓1 𝑀−1
𝛼 (𝑥), 𝜓20

𝛼 (𝑥), … , 𝜓2 𝑀−1
𝛼 (𝑥),… , 𝜓

2𝑘−10
𝛼 (𝑥), 𝜓

2𝑘−11
𝛼 (𝑥),… , 𝜓

2𝑘−1𝑀−1
𝛼 (𝑥)}    (11) 

is a finite dimensional vector space. 

Since Y is finite dimensional vector space, there is the best approximation for 𝑓(𝑥) in Y like 𝑓0(𝑥) 
i.e 

∀𝑦(𝑥) ∈ 𝑌,    ‖𝑓(𝑥) − 𝑓0(𝑥)‖ ≤  ‖𝑓(𝑥) − 𝑦(𝑥)‖.  

From the last relation, we can conclude that 

∀𝑦(𝑥) ∈ 𝑌,    < 𝑓(𝑥) − 𝑓0(𝑥), 𝑦(𝑥) >= 0,                                              (12)  

where <,> shows inner product. 

Because 𝑓0(𝑥) ∈ 𝑌, there are unique coefficients such as 𝑐10, 𝑐11, … , 𝑐2𝑘−1𝑀−1 that  

𝑓(𝑥) ≃ 𝑓0(𝑥) = ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚(𝑥)
𝑀−1
𝑚=0 = 𝐶𝑇Ψ𝛼2𝑘−1

𝑛=1 (𝑥)                              (13)  

Where t represents transpose of matrix, C and Ψ𝛼(𝑥) are matrices of order 2𝑘−1𝑀 × 1 and 

𝐶 = [𝑐10, 𝑐11, … , 𝑐1 𝑀−1, 𝑐20, … , 𝑐2𝑀−1, … , 𝑐2𝑘−1𝑀−1]
𝑇                         (14) 
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Ψ𝛼(𝑥) = [𝜓10
𝛼 (𝑥),𝜓11

𝛼 (𝑥), … ,𝜓1 𝑀−1
𝛼 (𝑥), 𝜓20

𝛼 (𝑥),… , 𝜓2 𝑀−1
𝛼 (𝑥),… , 𝜓

2𝑘−10
𝛼 (𝑥),𝜓

2𝑘−11
𝛼 (𝑥),… ,𝜓

2𝑘−1𝑀−1
𝛼 (𝑥)]𝑇 (15)  

By the use of equation (3.14), we obtain 

< 𝑓(𝑥) − 𝐶𝑇Ψ𝛼(𝑥),Ψ𝑖
𝛼 >= 0, 𝑖 = 0,1,… , 2𝑘−1𝑀                            (16) 

For simplicity, we write 

𝐶𝑇 < Ψ𝛼(𝑥),Ψ𝛼(𝑥) >=< 𝑓(𝑥),Ψ𝛼(𝑥) >,                                (17) 

where  

𝐷 =< Ψ𝛼(𝑥),Ψ𝛼(𝑥) >= ∫ Ψ𝛼(𝑥)Ψ𝛼𝑇(𝑥)
1

0
x𝛼−1𝑑𝑥                    (18) 

is a matrix of order 2𝑘−1𝑀 × 2𝑘−1𝑀. 

Matrix D in equation (18) can be calculated by equation (2.10) in every interval 𝑛 = 1,… , 2𝑘−1. For 

example, when 𝑘 = 2 and 𝑀 = 3, matrix D is Identity matrix and for 𝑘 = 2 and 𝑀 = 4, we get: 

𝐷 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0

0 1 0 −√
7

10
0 0 0 0

0 0 1 0 0 0 0 0

0 −√
7

10
0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 −√
7

10

0 0 0 0 0 0 1 0

0 0 0 0 0 −√
7

10
0 1

]
 
 
 
 
 
 
 
 
 
 
 
 

  

Also, 

𝐹 = [𝑓1,0, 𝑓1,1, … , 𝑓1,𝑀−1, 𝑓2,0, 𝑓2,1, … , 𝑓2,𝑀−1, … , 𝑓2𝑘−1,0, … , 𝑓2𝑘−1,𝑀−1]
𝑇,         (19) 

Where 

𝑓𝑖,𝑗 =< 𝑓(𝑥),𝜓𝑖,𝑗
𝛼 (𝑥) >= ∫ 𝑓(𝑥)𝜓𝑖,𝑗

𝛼 (𝑥)𝑥𝛼−1𝑑𝑥,
1

0
                               (20)  

𝑖 = 1,2,… , 2𝑘−1, 𝑗 = 0,1, … ,𝑀 − 1.  

Using the above equations, we get coefficient vector C as follow 

𝐶𝑇 = 𝐹𝑇𝐷−1,                                                                    (21)  

3.3. Transformation matrix of Bernoulli wavelet-fraction to fractional-order Bernoulli 

functions 

Assume that 𝑦(𝑥) ∈ 𝐿2[0,1]. Then, it can be expressed in terms of Bernoulli functions as follows 

𝑦(𝑥) ≃ ∑ 𝑎𝑖𝛽𝑖
𝛼(𝑥)𝑀−1

𝑖=0 = 𝐴𝑇𝐵𝛼(𝑥) ,                                                    (22)  

where matrices 𝐴 and 𝐵𝛼(𝑥) are 

𝐵𝛼(𝑥) = [𝛽0
𝛼(𝑥), 𝛽1

𝛼(𝑥),… , 𝛽𝑀−1
𝛼 (𝑥)]𝑇,    𝐴 = [𝑎0, 𝑎1, … , 𝑎𝑀−1]

𝑇 ,                  (23)  
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Similar to Equation (3.21), we can write 

𝐴𝑇 = 𝑌𝑇𝐷∗−1,                                                                         (24)  

Where 

𝐷∗ =< 𝐵𝛼 , 𝐵𝛼 >= ∫ 𝐵𝛼(𝑥)𝐵𝛼𝑇(𝑥)𝑥𝛼−1𝑑𝑥,
1

0
 𝑌 = [𝑦0, 𝑦1, … , 𝑦𝑀−1]

𝑇      ,           (25)  

And 

𝑦𝑖 = ∫ 𝑦(𝑥)𝛽𝑖
𝛼(𝑥)𝑥𝛼−1𝑑𝑥,

1

0
 𝑖 = 0,1,… ,𝑀 − 1                                            (26)  

Fractional-order Bernoulli wavelets can be expressed in terms of a fractional Bernoulli function as 

follows 

Ψ
2𝑘−1𝑀×1
𝛼 (𝑥) = Θ2𝑘−1𝑀×𝑀𝐵𝑀×1

𝛼 (𝑥),                                                 (27) 

where Θ is the transformation matrix of Bernoulli fraction-order wavelet to fractional-order 

Bernoulli function. For example, suppose 𝑘 = 2 and 𝑀 = 3, then 

Ψ𝛼(𝑥) = [𝜓10
𝛼 (𝑥), 𝜓11

𝛼 (𝑥), 𝜓12
𝛼 (𝑥), 𝜓20

𝛼 (𝑥), 𝜓21
𝛼 (𝑥), 𝜓22

𝛼 (𝑥)]𝑇                       (28)  

𝐵𝛼(𝑥) = [𝛽0
𝛼(𝑥), 𝛽1

𝛼(𝑥), 𝛽2
𝛼(𝑥)]𝑇,                                                  (29)  

which for 0 ≤ 𝑥 < (
1

2
)
1

𝛼 

𝜓10
𝛼 (𝑥) = √2 = √2𝛽0

𝛼(𝑥),                                                 (29) 

𝜓11
𝛼 (𝑥) = √6(−1 + 4𝑥𝛼) = √6𝛽0

𝛼(𝑥) + 4√6𝛽1
𝛼(𝑥),  

𝜓12
𝛼 (𝑥) = √10(1 − 12𝑥𝛼 + 24𝑥2𝛼) = 3√10𝛽0

𝛼(𝑥) + 12√10𝛽1
𝛼(𝑥) + 24√10𝛽2

𝛼(𝑥),  

and for (
1

2
)
1

𝛼 < 𝑥 ≤ 1 

𝜓20
𝛼 (𝑥) = √2 = √2𝛽0

𝛼(𝑥),                                                 (30) 

𝜓21
𝛼 (𝑥) = √6(−3 + 4𝑥𝛼) = −√6𝛽0

𝛼(𝑥) + 4√6𝛽1
𝛼(𝑥), 

𝜓22
𝛼 (𝑥) = √10(13− 36𝑥𝛼 + 24𝑥2𝛼) = 3√10𝛽0

𝛼(𝑥) − 12√10𝛽1
𝛼(𝑥) + 24√10𝛽2

𝛼(𝑥).  

Using the definition of fractional-order Bernoulli wavelet, we get 𝜓11
𝛼 (𝑥) for 𝑘 = 2,𝑚 =

1, and 𝑛 = 1 as follow 

𝜓11
𝛼 (𝑥) = √2√12𝛽1(2𝑥

𝛼) = 2√6𝛽1(2𝑥
𝛼) = 2√6(2𝑥𝛼 −

1

2
) = √6(4𝑥𝛼 − 1)  

According to equation (2.9), it is easy to obtain 

𝛽1
𝛼(𝑥) = 𝑥𝛼 −

1

2
 ⟹ 𝑥𝛼 = 𝑥𝛼 +

1

2
  

𝛽0
𝛼(𝑥) = 1,  

Therefore, we have 

𝜓11
𝛼 (𝑥) = √6(4𝛽1

𝛼(𝑥) + 1) = 4√6𝛽1
𝛼(𝑥) + √6𝛽0

𝛼(𝑥).  

The other wavelets can be calculated in the same way. 
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    Consider 

Θ = {
Φ = [𝑎𝑖,𝑗]6×3,          0 ≤ 𝑥 < (

1

2
)
1

𝛼    

Φ′ = [𝑎𝑖,𝑗
′ ]6×3,           (

1

2
)
1

𝛼 ≤ 𝑥 < 1 
                                      (31) 

And 

𝛷 =

[
 
 
 
 
 √2 0 0

√6 4√6 0

3√10 12√10 24√10
0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

 and 𝛷′ =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0

√2 0 0

−√6 4√6 0

3√10 −12√10 24√10]
 
 
 
 
 

  

 

To calculate inverses of matrices Φ and Φ′, we proceed as follow 

Φ = [
𝐴
…
0
]

2𝑘−1𝑀×𝑀

      Φ−1 = [𝐴−1 ⋮ 0]𝑀×2𝑘−1𝑀  

Φ′ = [
0
…
𝐵
]

2𝑘−1𝑀×𝑀

      Φ′−1 = [0 ⋮ 𝐵−1]𝑀×2𝑘−1𝑀 .  

Generally, for 𝑘 = 2 and arbitrary 𝑀, we get 

Θ = {
Φ = [𝑎𝑖,𝑗]2𝑘−1𝑀×𝑀 ,          0 ≤ 𝑥 < (

1

2
)
1

𝛼    

Φ′ = [𝑎𝑖,𝑗
′ ]2𝑘−1𝑀×𝑀 ,           (

1

2
)
1

𝛼 ≤ 𝑥 < 1 
  

where 

𝑎𝑖,𝑗 =
1

2
𝑘−1
2

{
 

 2
𝑖 1

𝜆𝑖−1
,                                         𝑖 = 𝑗

2𝑗−1 (𝑖−1
𝑖−𝑗
)

1

𝜆𝑖−1
,              𝑗 < 𝑖 ≤ 𝑀

0,                                                 𝑒𝑙𝑠𝑒

  

and 

𝑎𝑖,𝑗
′ = {

0,                                                                 1 ≤ 𝑖 ≤ 𝑀

(−1)𝑖+𝑗−𝑀𝑎𝑖−𝑀,𝑗 ,                    𝑀 + 1 ≤ 𝑖 ≤ 2𝑘−1𝑀
   ,   𝑗 = 1,2, … ,𝑀, 

and 

𝜆𝑖 = √
(−1)𝑖−1(𝑖!)2

(2𝑖)!
𝛽2𝑖 , 𝑖 = 1,2,… ,𝑀 − 1, 𝜆0 = 1  

3.4. Fractional Integral Operational Matrix of Bernoulli Fractional-Order Wavelets 

Riemann-Liouville fractional integral of vector 𝐵𝛼(𝑥) in equation is given by 

𝐼𝜈𝐵𝛼(𝑥) ≃ 𝐹(𝜐,𝛼)(𝑥)𝐵𝛼(𝑥)                                                        (32)  
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Where 𝑭(𝝊,𝜶) is the operational matrix of Riemann-Liouville fractional integral of order  𝜈, which is 

𝑀 ×𝑀. 

If we use equation (2.9) and properties of operator 𝐼𝜈 for 𝑖 = 0,1,… ,𝑀 − 1, we get 

𝐼𝜈𝛽𝑖
𝛼(𝑥) = 𝐼𝜈(∑ (𝑖

𝑟
)𝛽𝑖−𝑟𝑥

𝛼𝑟𝑖
𝑟=0 ) = ∑ (𝑖

𝑟
)𝛽𝑖−𝑟𝐼

𝜈𝑥𝛼𝑟𝑖
𝑟=0   

= ∑ (𝑖
𝑟
)𝛽𝑖−𝑟

Γ(𝛼𝑟+1)

Γ(𝛼𝑟+1+𝜐)

𝑖
𝑟=0                                                                    (33)  

= ∑ 𝑏𝑖,𝑟
(𝜐,𝛼)

𝑥𝛼𝑟+𝜐𝑖
𝑟=0                                

where 

𝑏𝑖,𝑟
(𝜐,𝛼)

= (𝑖
𝑟
)

Γ(𝛼𝑟+1)

Γ(𝛼𝑟+1+𝜐)
𝛽𝑖−𝑟 .                                                               (34)  

Suppose that it is possible to expand 𝑥𝛼𝑟+𝜐 by the Bernoulli fractional-order polynomials with 𝑀 

sentences as follow 

𝑥𝛼𝑟+𝜐 ≃ ∑ 𝑐𝑟,𝑗
(𝜐,𝛼)𝑥𝛼𝑟+𝜐𝑖

𝑟=0 𝛽𝑗
𝛼(𝑥).                                                   (35)  

By placing equation (3.34) in equation (3.32) for 𝑖 = 0,1,… ,𝑀, we get 

𝐼𝜈𝛽𝑖
𝛼(𝑥) ≃ ∑ 𝑏𝑖,𝑟

(𝜐,𝛼)𝑖
𝑟=0 ∑ 𝑐𝑟,𝑗

(𝜐,𝛼)𝑖
𝑟=0 𝛽𝑗

𝛼(𝑥) = ∑ (∑ 𝑤𝑖,𝑗,𝑟
(𝜐,𝛼)𝑖

𝑟=⌈
𝜐

𝛼
⌉

) 𝛽𝑗
𝛼(𝑥)𝑀−1

𝑗=0 ,                   (36)  

where 

𝑤𝑖,𝑗,𝑟
(𝜐,𝛼) = 𝑏𝑖,𝑟

(𝜐,𝛼)
𝑐𝑟,𝑗
(𝜐,𝛼)

.                                                                          (37)  

Equation (3.35) can be written as follow 

𝐼𝜈𝛽𝑖
𝛼(𝑥) ≃ [∑ 𝑤𝑖,0,𝑟

(𝜐,𝛼) ,𝑖
𝑟=0 ∑ 𝑤𝑖,1,𝑟

(𝜐,𝛼) ,𝑖
𝑟=0 … ,∑ 𝑤𝑖,𝑀−1,𝑟

(𝜐,𝛼) ,𝑖
𝑟=0 ]𝐵𝛼(𝑥),    𝑖 = 0,1,… ,𝑀 − 1.  

Thus, we have 

𝐹(𝜐,𝛼) =

[
 
 
 
 
 
 𝑤𝑖,0,𝑟

(𝜐,𝛼)
𝑤𝑖,1,𝑟
(𝜐,𝛼)

⋯ 𝑤𝑖,𝑀−1,𝑟
(𝜐,𝛼)

∑ 𝑤𝑖,0,𝑟
(𝜐,𝛼)

1

𝑟=0
∑ 𝑤𝑖,1,𝑟

(𝜐,𝛼)
1

𝑟=0
⋯ ∑ 𝑤𝑖,𝑀−1,𝑟

(𝜐,𝛼)
1

𝑟=0

⋮ ⋮ ⋯ ⋮

∑ 𝑤𝑀−1,0,𝑟
(𝜐,𝛼)

𝑀−1

𝑟=0
∑ 𝑤𝑀−1,1,𝑟

(𝜐,𝛼)
𝑀−1

𝑟=0
⋯ ∑ 𝑤𝑀−1,𝑀−1,𝑟

(𝜐,𝛼)
𝑀−1

𝑟=0 ]
 
 
 
 
 
 

.  

We calculate 𝑤𝑖,0,𝑟
(𝜐,𝛼), 𝑤𝑖,0,𝑟

(𝜐,𝛼), 𝑤𝑖,0,𝑟
(𝜐,𝛼)

 for 𝛼 = 2,𝑀 = 3, and υ = 2: 

According equation (3.36), we can write 

𝑤𝑖,𝑗,𝑟
(𝜐,𝛼) = 𝑤0,0,0

(𝜐,𝛼) = 𝑏0,0
(𝜐,𝛼)𝑐0,0

(𝜐,𝛼) .  

Based on equation (3.33) for 𝑏0,0
(𝜐,𝛼)

, we also have 

𝑏0,0
(𝜐,𝛼) = 𝑏0,0

(𝜐,𝛼) = (0
0
)
Γ(1)

Γ(3)
𝛽0 =

1

2
,  

where is the first Bernoulli’s number.  
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We calculate 𝑐0,0
(𝜐,𝛼)

 from equation (3.34) 

𝑐𝑟,𝑗
(𝜐,𝛼) = 𝑐0,0

(𝜐,𝛼) =
1

∫ 𝛽0
𝛼(𝑥).𝛽0

𝛼(𝑥).𝑥𝛼−1𝑑𝑥
1
0

∫ 𝑥2. 𝛽0
𝛼(𝑥). 𝑥𝛼−1𝑑𝑥

1

0
=

1

∫ 𝑥𝑑𝑥
1
0

∫ 𝑥3𝑑𝑥 = 2 ×
1

4
=

1

2
,   

1

0
  

Therefore, 𝑤0,0,0
(𝜐,𝛼) =

1

4
. 

Similarly, we have for 𝑤𝑖,𝑗,𝑟
(𝜐,𝛼) = 𝑤0,1,0

(𝜐,𝛼) = 𝑏0,0
(𝜐,𝛼)𝑐0,1

(𝜐,𝛼)
: 

𝑏𝑖,𝑟
(𝜐,𝛼) = 𝑏0,0

(𝜐,𝛼) = (0
0
)
Γ(1)

Γ(3)
𝛽0 =

1

2
,  

𝑐𝑟,𝑗
(𝜐,𝛼) = 𝑐0,2

(𝜐,𝛼) =
1

∫ 𝛽2
𝛼(𝑥).𝛽2

𝛼(𝑥).𝑥𝛼−1𝑑𝑥
1
0

∫ 𝑥2. 𝛽2
𝛼(𝑥). 𝑥𝛼−1𝑑𝑥

1

0
=

1

∫ (𝑥4−𝑥2+
1

6
)2.𝑥𝑑𝑥

1
0

∫ 𝑥3(𝑥4 − 𝑥2 +
1

0

1

6
)𝑑𝑥 =

1

360
× 0 = 0.  

So, 𝑤0,1,0
(𝜐,𝛼) =

1

2
× 0 = 0. 

The other components of this matrix are calculated in the same way. In this section, we evaluate the 

fractional integral operational matrix of Bernoulli fractional-order wavelets: 

𝐼𝜐Ψ𝛼(𝑥) = 𝐼𝜐Θ𝐵𝛼(𝑥) = Θ𝐼𝜐𝐵𝛼(𝑥) ≃ Θ𝐹(𝜐,𝛼)𝐵𝛼(𝑥),                                 (38)  

From equations (3.37) and (3.38), it is concluded that 

𝑃(𝜐,𝛼)Ψ𝛼(𝑥) = 𝑃(𝜐,𝛼)Θ𝐵𝛼(𝑥) ≃ Θ𝐹(𝜐,𝛼)𝐵𝛼(𝑥). 

Therefore, fractional integral operational matrix of FBWs is acquired as follow 

𝑃(𝜐,𝛼) ≃ Θ𝐹(𝜐,𝛼)Θ−1                                                                          (39) 

3.5. Fractional Derivative Operational Matrix of Bernoulli Fractional-Order Wavelets 

In this section, we apprise the fractional derivative operational matrix of order 𝜐. At first, we 

describe the following lemma. 

Lemma 3.6 Suppose that 𝛽𝑖
𝛼(𝑥) is a Bernoulli fractional-order function, then  

𝐷𝜈𝛽𝑖
𝛼(𝑥) = 0,    𝑖 = 0,1, … , ⌈

𝜐

𝛼
⌉ − 1, 𝜈 > 0,  

Proof. This claim can be proved by properties of Caputo fractional derivative and equation (2.9).  

     Riemann-liouvill fractional derivative of vector 𝐵𝛼(𝑥) in equation (3.22) is described by 

𝐷𝜈𝐵𝛼(𝑥) ≃ 𝐺(𝜈,𝛼)𝐵𝛼(𝑥)                                                                         (40)  

where 𝐺(𝜈,𝛼) is fractional derivative operational matrix of order 𝑀 ×𝑀. 

We find by using equation (2.9) and properties of Caputo fractional derivative for 𝑖 = ⌈
𝜐

𝛼
, … ,𝑀 −

1⌉ that 

𝐷𝜈𝛽𝑖
𝛼(𝑥) = 𝐷𝜈(∑ (𝑖

𝑟
)𝛽𝑖−𝑟𝑥

𝛼𝑟𝑖
𝑟=0 ) = ∑ (𝑖

𝑟
)𝛽𝑖−𝑟𝐷

𝜈𝑥𝛼𝑟𝑖
𝑟=0   = ∑ (𝑖

𝑟
)𝛽𝑖−𝑟

Γ(𝛼𝑟+1)

Γ(𝛼𝑟+1−𝜐)
 𝑥𝛼𝑟−𝜈   = =𝑖

𝑟=⌈
𝜐

𝛼
⌉

∑ 𝜂𝑖,𝑟
( 𝜈,𝛼)

𝑥𝛼𝑟−𝜈𝑖

𝑟=⌈
𝜐

𝛼
⌉

                                                        (41) 
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where 

𝜂𝑖,𝑟
( 𝜈,𝛼)

= (𝑖
𝑟
)

Γ(𝛼𝑟+1)

Γ(𝛼𝑟+1−𝜐)
 𝛽𝑖−𝑟 .  

Imagine that we can expand 𝑥𝛼𝑟+𝜈 by 𝑀 sentence of Bernoulli fractional-order functions as follow 

𝑥𝛼𝑟−𝜈 ≃ ∑ 𝑘𝑟,𝑗
(𝜐,𝛼)𝑀−1

𝑗=0 𝛽𝑗
𝛼(𝑥).                                                    (42)  

Applying equations (3.41) and (3.42), we find out 

𝐷𝜈𝛽𝑖
𝛼(𝑥) ≃ ∑ 𝜂𝑖,𝑟

(𝜐,𝛼)𝑖

𝑟=⌈
𝜐

𝛼
⌉

∑ 𝑘𝑟,𝑗
(𝜐,𝛼)𝑖

𝑗=0 𝛽𝑗
𝛼(𝑥) = ∑ (∑ 𝜃𝑖,𝑗,𝑟

(𝜐,𝛼)𝑖

𝑟=⌈
𝜐

𝛼
⌉

) 𝛽𝑗
𝛼(𝑥)𝑀−1

𝑗=0 ,              (43)  

𝜃𝑖,𝑗,𝑟
(𝜐,𝛼) = 𝜂𝑖,𝑟

(𝜐,𝛼)𝑘𝑟,𝑗
(𝜐,𝛼) ,  

If we rewrite the equation (3.43) as a vector, we obtain 

𝐷𝜈𝛽𝑖
𝛼(𝑥) ≃ [∑ 𝜃𝑖,0,𝑟

(𝜐,𝛼)𝑖

𝑟=⌈
𝜐

𝛼
⌉

, ∑ 𝜃𝑖,1,𝑟
(𝜐,𝛼)𝑖

𝑟=⌈
𝜐

𝛼
⌉

, … ,∑ 𝜃𝑖,𝑀−1,𝑟
(𝜐,𝛼)𝑖

𝑟=⌈
𝜐

𝛼
⌉

] 𝐵𝛼(𝑥), 𝑖 = ⌈
𝜐

𝛼
⌉ ,… ,𝑀 − 1.      (44)  

Hence, we have 

𝐺(𝜐,𝛼) =

[
 
 
 
 
 
 
 
 
 
 
 

0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0

𝜃
⌈
𝜐

𝛼
⌉,0,⌈

𝜐

𝛼
⌉

(𝜐,𝛼)
𝜃
⌈
𝜐

𝛼
⌉,1,⌈

𝜐

𝛼
⌉

(𝜐,𝛼)
⋯ 𝜃

⌈
𝜐

𝛼
⌉,𝑀−1,⌈

𝜐

𝛼
⌉

(𝜐,𝛼)

⋮ ⋮ ⋯ ⋮

∑ 𝜃𝑖,0,𝑟
(𝜐,𝛼)

𝑖

𝑟=⌈
𝜐

𝛼
⌉

∑ 𝜃𝑖,1,𝑟
(𝜐,𝛼)

𝑖

𝑟=⌈
𝜐

𝛼
⌉

⋯ ∑ 𝜃𝑖,𝑀−1,𝑟
(𝜐,𝛼)

𝑖

𝑟=⌈
𝜐

𝛼
⌉

⋮ ⋮ ⋯ ⋮

∑ 𝜃𝑀−1,0,𝑟
(𝜐,𝛼)

𝑀−1

𝑟=⌈
𝜐

𝛼
⌉

∑ 𝜃𝑀−1,1,𝑟
(𝜐,𝛼)

𝑀−1

𝑟=⌈
𝜐

𝛼
⌉

⋯ ∑ 𝜃𝑀−1,𝑀−1,𝑟
(𝜐,𝛼)

𝑀−1

𝑟=⌈
𝜐

𝛼
⌉ ]

 
 
 
 
 
 
 
 
 
 
 

.  

 

In this section, we obtain the fractional integral operational matrix of Bernoulli fractional-order 

wavelets: 

𝐷𝜈Ψ𝛼(𝑥) ≃ 𝐷(𝜈,𝛼)Ψ𝛼(𝑥),                                                           (45)  

where 𝐷(𝜈,𝛼) is called the fractional integral operational matrix of Bernoulli fractional-order 

wavelets. 

     Using equations (3.26) and (3.40), we find that 

𝐷𝜈Ψ𝛼(𝑥) = 𝐷𝜈Θ𝐵𝛼(𝑥) = Θ𝐷𝜈𝐵𝛼(𝑥) ≃ Θ𝐺(𝜐,𝛼)𝐵𝛼(𝑥),                              ( 46)  

From (3.45) and (3.46), the following relations can be concluded 

𝐷(𝜈,𝛼)Ψ𝛼(𝑥) = 𝐷(𝜈,𝛼)Θ𝐵𝛼(𝑥) ≃ Θ𝐺(𝜐,𝛼)𝐵𝛼(𝑥). 

Consequently, fractional derivative operational matrix of FBWs obtain as follow 

𝐷(𝜈,𝛼) ≃ Θ𝐺(𝜐,𝛼)Θ−1.                                                                        (47)  
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3.7. The upper limit of error for the fractional integral operational matrix of fractional-order 

Bernoulli wavelets 

In this section, we obtain an upper error bound for the operational matrix of the fractional integrals 

𝑃(𝜈,𝛼)and 𝐹(𝜈,𝛼). Besides, we show that the error vectors 𝐸 𝐼
(𝜈)

and �̃�𝐼
(𝜈)

 approach zero when the 

number of Bernoulli fractional-order functions increases. To find these errors, we repeat the 

following theorems.  

Theorem 3.8 Imagine 𝑓 ∈ 𝐿2[0,1]. It is possible to write f by infinitive series of Bernoulli 

fractional-order wavelets and uniformly convergent series as follow 

𝑓(𝑥) = ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚
𝛼 (𝑥)∞

𝑚=0 .∞
𝑛=1   

Since the reduced series of Bernoulli fractional-order wavelets is an approximate solution of a 

system, the error function 𝐸(𝑥) for 𝑓(𝑥) exists as follow: 

𝐸(𝑥) = |𝑓(𝑥) − ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚
𝛼 (𝑥)𝑀−1

𝑚=0
2𝑘−1
𝑛=1 |  

By placing 𝑥 = 𝑥𝑗 ∈ [0,1], we can determine the absolute value of the error in 𝑥𝑗. 

     The following theorem gives an error bound for the approximate solution by using series of 

𝐹𝐵𝑊𝑠. Before that, we have to provide the following definition. 

Taylor's original formula [32]. Assume that 𝐷𝑖𝛼𝑓(𝑥) ∈ (0,1] for 𝑖 = 1,2,… ,𝑚, so we have: 

𝑓(𝑡) = ∑
𝑡𝑖𝛼

Γ(𝑖𝛼+1)

𝑚−1
𝑖=0 𝐷𝑖𝛼𝑓(0+) +

𝑡𝑚𝛼

Γ(𝑚𝛼+1)
𝐷𝑚𝛼𝑓(𝜉),                               (48)  

where 0 < 𝜉 ≤ 𝑡, ∀𝑡 ∈ (0,1]. Also, we have 

|𝑓(𝑥) − ∑
𝑡𝑖𝛼

Γ(𝑖𝛼+1)

𝑚−1
𝑖=0 𝐷𝑖𝛼𝑓(0+)| ≤ 𝑀𝛼

𝑡𝑚𝛼

Γ(𝑚𝛼+1)
,                                        (49)  

Where 𝑠𝑢𝑝𝜉∈(0,1]|𝐷
𝑚𝛼𝑓(𝜉)| ≤ 𝑀𝛼. When 𝛼 = 1, the original Taylor formula is reduced to the 

Taylor Classic Formula. 

Theorem 3.9. Suppose that 𝐷𝑖𝛼𝑓(𝑥) ∈ (0,1] for 𝑖 = 1,2, … ,𝑚, (2𝑀 + 1)𝛼 ≥ 1, (�̂� = 2𝑘−1𝑀) and 

𝑌𝑀
𝛼 = 𝑠𝑝𝑎𝑛{𝛽0

𝛼(𝑥), 𝛽1
𝛼(𝑥),… , 𝛽𝑀−1(𝑥)

𝛼 }. If 𝑓𝑀(𝑥) = 𝐴
𝑇  𝐵𝛼(𝑥) is the best approximation derived 

from 𝑌𝑀
𝛼 on the interval [

𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
], then approximate solution error bound of 𝑓�̂�(𝑥) can be 

obtained by FBWs series on [0,1] as follow [6] 

‖𝑓 − 𝑓�̂�‖ ≤
𝑠𝑢𝑝𝑥∈[0,1]|𝐷

𝑀𝛼𝑓(𝑥)|

Γ(𝑀𝛼+1)√(2𝑀+1)𝛼
                                                        (50)  

Proof. We define  

𝑓1(𝑥) = ∑
𝑥𝑖𝛼

Γ(𝑖𝛼+1)
𝑀−1
𝑖=0 𝐷𝑖𝛼𝑓(0+).  

Based on the above definition, we get 

|𝑓(𝑥) − 𝑓1(𝑥)| ≤
𝑥𝑀𝛼

Γ(𝑀𝛼+1)
𝑠𝑢𝑝𝑥∈𝐼𝑘,𝑛|𝐷

𝑀𝛼𝑓(𝑥)|  

where 
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𝐼𝑘,𝑛 = [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
].  

Since 𝑓𝑀(𝑥) = 𝐴
𝑇  𝐵𝛼(𝑥), the best approximation derived from 𝑌𝑀

𝛼 on the interval [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
] and 

∑
𝑥𝑖𝛼

Γ(𝑖𝛼+1)
𝑀−1
𝑖=0 𝐷𝑖𝛼𝑓(0+) ∈ 𝑌𝑀

𝛼, thus  

‖𝑓 − 𝑓�̂�‖𝐿2[0,1]
2 = ‖𝑓 − 𝐶𝑇Ψ𝛼‖

𝐿2[0,1]
2 = ∑ ‖𝑓 − 𝐴𝑇𝐵𝛼‖

𝐿2[
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
]

22𝑘−1
𝑛=1  ≤    ∑ ‖𝑓 −2𝑘−1

𝑛=1

𝑓1‖𝐿2[ 𝑛−1
2𝑘−1

,
𝑛

2𝑘−1
]

2 ≤ ∑ ∫ [
𝑥𝑀𝛼

Γ(𝑀𝛼+1)
𝑠𝑢𝑝𝑥∈𝐼𝑘,𝑛|𝐷

𝑀𝛼𝑓(𝑥)|]
2

𝑥𝛼−1𝑑𝑥

𝑛

2𝑘−1
𝑛−1

2𝑘−1

2𝑘−1
𝑛=1 ≤

∫ [
𝑥𝑀𝛼

Γ(𝑀𝛼+1)
𝑠𝑢𝑝𝑥∈𝐼𝑘,𝑛|𝐷

𝑀𝛼𝑓(𝑥)|]
2

𝑥𝛼−1𝑑𝑥
1

0
 ≤  

1

Γ(𝑀𝛼+1)2(2𝑀+1)𝛼
(𝑠𝑢𝑝𝑥∈[0,1]|𝐷

𝑀𝛼𝑓(𝑥)|)2  

The proof  is complete if we take the second root. 

The last theorem proves that the approximations of Bernoulli fractional-order wavelets 𝑓(𝑥) is 

convergent. Now, we try to find the upper bound of 𝑃(𝜈,𝛼). Furthermore, we show that the error 

vector of 𝐸 𝐼
(𝜈)

 approaches zero when the number of FBws increases. At first, we explain the 

following theorems. 

Theorem 3.10. Suppose Y is a subspace of the Hilbert space H so that 𝑑𝑖𝑚𝑌 < ∞ and 𝑦1, 𝑦2, … , 𝑦𝑛 

is a basis for Y. Also, imagine z is an arbitrary member of H and 𝑦∗ is the best approximation of z 

derived from Y. Based on [13], we have 

‖𝑦 − 𝑦∗‖2
2 =

𝐺(𝑧,𝑦1,𝑦2,…,𝑦𝑛)

𝐺(𝑦1,𝑦2 ,…,𝑦𝑛)
,  

where 

𝐺(𝑧, 𝑦1, 𝑦2, . . . , 𝑦𝑛) = |

< 𝑧, 𝑦1 > < 𝑧, 𝑦1 > . . . < 𝑧, 𝑦𝑛 >
< 𝑦1, 𝑧 > < 𝑦1, 𝑦1 > . . . < 𝑦1, 𝑦𝑛 >

⋮ ⋮ ⋮ ⋮
< 𝑦𝑛 , 𝑧 > < 𝑦𝑛 , 𝑦1 > . . . < 𝑦𝑛 , 𝑦𝑛 >

|  

Theorem 3.11. Assume that 𝑔 ∈ 𝐿2[0,1] is approximated by 𝑔𝑀(𝑥) as follow 

𝑔(𝑥) ≃ 𝑔𝑀(𝑥) = ∑ 𝑎𝑖𝛽𝑖
𝛼𝑀−1

𝑖=0 = 𝐴𝑇𝐵𝛼(𝑥).  

Remember that 𝐴𝑇 and 𝐵𝛼(𝑥) were defined in equation (3.22). By considering 

𝐿𝑀(𝑔) = ∫ [𝑔(𝑥) − 𝑔𝑀(𝑥)]
21

0
𝑑𝑥,  

we obtain 

lim
𝑀⟶∞

𝐿𝑀(𝑔) = 0. 

The error vector 𝐸 𝐼
(𝜈)

of the operational matrix 𝑃(𝜈,𝛼)can be calculated as follow 

𝐸 𝐼
(𝜈)
= 𝑃(𝜈,𝛼)Ψ𝛼 − 𝐼𝛼Ψ𝛼 ,   𝐸 𝐼

(𝜈)
= [

𝑒𝐼0
𝑒𝐼1
⋮

𝑒𝐼2𝑘−1(𝑀−1)

]                                 (51)  

From equation (3.43) by the assumption 𝑥𝛼𝑟+𝜐, we conclude 
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𝑥𝛼𝑟+𝜐 ≃ ∑ 𝑐 𝑟,𝑗
(𝜈,𝛼)𝛽 𝑗

𝛼(𝑥),                                                   (52)𝑀−1
𝑗=0   

where 𝑐 𝑟,𝑗
(𝜈,𝛼)

was calculated with the best approximation. Using theorem (3.10), we find 

‖𝑥𝛼𝑟+𝜐 − ∑ 𝑐 𝑟,𝑗
(𝜈,𝛼)𝛽 𝑗

𝛼(𝑥)

𝑀−1

𝑗=0

‖

2

= (
𝐺(𝑥𝛼𝑟+𝜐, 𝛽 0

𝛼(𝑥),𝛽 1
𝛼(𝑥),… , 𝛽 𝑀−1

𝛼 (𝑥))

𝐺(𝛽 0
𝛼(𝑥),𝛽 1

𝛼(𝑥),… , 𝛽 𝑀−1
𝛼 (𝑥))

)

1
2

                      (53) 

Based on (3.32)-(3.35) for 0 ≤ 𝑖 ≤ 𝑀 − 1, we get 

‖�̃�𝐼𝑖‖2 = ‖𝐼
𝜐𝛽 𝑖

𝛼(𝑥) − ∑ (∑ 𝑤 𝑖,𝑗,𝑟
(𝜈,𝛼)𝑖

𝑟=0 )𝑀−1
𝑗=0 𝛽 𝑗

𝛼(𝑥)‖
2
≤ ∑ (𝑖

𝑟
)

Γ(𝛼𝑟+1)

Γ(𝛼𝑟+1+𝜐)
 𝛽𝑖−𝑟

𝑖
𝑟=0 ‖𝑥𝛼𝑟+𝜐 −

∑ 𝑐 𝑟,𝑗
(𝜈,𝛼)𝛽 𝑗

𝛼(𝑥)𝑀−1
𝑗=0 ‖

2
≤ ∑ (𝑖

𝑟
)

Γ(𝛼𝑟+1)

Γ(𝛼𝑟+1+𝜐)
 𝛽𝑖−𝑟

𝑖
𝑟=0 (

𝐺(𝑥𝛼𝑟+𝜐,𝛽 0
𝛼(𝑥),𝛽 1

𝛼(𝑥),…,𝛽 𝑀−1
𝛼 (𝑥))

𝐺(𝛽 0
𝛼(𝑥),𝛽 1

𝛼(𝑥),…,𝛽 𝑀−1
𝛼 (𝑥))

)

1

2

,  

Now, we can find error vector 𝐸 𝐼
(𝜈)

of fractional integral operational matrix of Bernoulli fractional-

order wavelets. Using equations (3.26) and (3.39), we find 

𝐸 𝐼
(𝜈)
= 𝑃(𝜈,𝛼)Ψ𝛼 − 𝐼𝜐Ψ𝛼 = Θ𝐹(𝜈,𝛼)Θ−1Θ𝐵𝛼 − 𝐼𝛼Θ𝐵𝛼 = Θ𝐹(𝜈,𝛼)𝐵𝛼 − Θ𝐼𝜐𝐵𝛼 = Θ�̃�𝐼

(𝜐).  

Therefore, we obtain 

𝐸 𝐼
(𝜈)
= Θ�̃�𝐼

(𝜐)
.                                                                       (55)  

According to the above discussion and Theorem 2, we can conclude that the bases of vectors 𝐸 𝐼
(𝜈)

 

and �̃�𝐼
(𝜐)

 approach zero when the number of Bernoulli fractional-order functions increases. 

4. The wavelets method for solving differential equations of Fokker-Planck-Kolmogorov 

fractional order 

For the approximate solution of the Fokker-Planck-Kolmogorov fractional differential equation, the 

Bernoulli wavelet method is explained as follows:  

Dt
αu −

1

2
σ2x2

∂2u

∂x2
+ (β − 2σ2)x

∂u

∂x
+ (β − σ2)u = R(x, t)                     (56) 

Initial conditions:  

u(0, x) = 𝑓0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑓1(𝑥),    0 ≤ 𝑥 ≤ 1 

Boundary conditions:  

u(𝑡, 0) = 𝑔0(𝑡),    𝑢𝑡(𝑡, 1) = 𝑔0(𝑡),    0 ≤ 𝑡 ≤ 1 
  𝑅(𝑥, 𝑡) Is the right-side function of the equation given for each equation. 

Consider: 
∂4u(t,x)

∂x2 ∂t2
≈ Ψm×m

T (x)Cm×m
 Ψm×m(t)                                                          (57) 

 

By twice integrating with t from both sides of equation (57) we have: 

 
∂2u(x,t)

∂x2
≈ f0

″(x) + tf1
″(x) + Ψm×m

T (x)Cm×m
 (I2Ψm×m(t))                        (58) 

 

By twice integrating with x from both sides of equation (58) we have: 
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∂ u(t,x)

∂x 
=

∂ u(t,x)

∂x 
|x=0 + f0

′(x) + f0
′(0) + t(f1

′(x)−f1
′(0)) +  

(IHm×m
T (x))TΨm×m

 (I2Ψm×m(t))                                                                         (59) 

  u(t, x) ≈ u(t, 0) + x
∂ u(t,x)

∂x 
|x=0 + (f0(x) − f0(0) − xf0

′(0)) + t(f1(x) − f1(0) − xf1
′(0)) +

(I2Ψm×m
 (x))TCm×m

 (I2Ψm×m(t))                                         (60) 
 

Now by applying the boundary conditions and putting x = 1, we will have: 

 

u(t, 1) ≈ u(t, 0) + x
∂ u(t,x)

∂x 
|x=0 + (f0(1) − f0(0) − xf0

′(0)) + t(f1(1) − f1(0) − f1
′(0)) +

(I2Ψm×m
 (1))TCm×m

 (I2Ψm×m(t))                                              (61) 
Therefor: 

 
∂ u(t,x)

∂x 
|x=0 ≈ g1(t) − g0(t) − (f0(1) − f0(0) − f0

′(0)) − t(f1(1) − f1(0) − f1
′(0)) −

(I2Ψm×m
 (1))

T
Cm×m
 (I2Ψm×m(t)) = K(t)                                               (62) 

 

Now by placing K(t) in Equation (60) we have: 

 

u(t, x) ≈ g0(t) + xK(t) + (f0(x) − f0(0) − xf0
′(0)) + t(f1(x) − f1(0) − xf1

′(0)) +

(I2Ψm×m
 (x))

T
Cm×m
 (I2Ψm×m(t))                                                         (63) 

Now we need the fraction derivative u (t, x) according to Equation (56). From Equation (62) we 

derive the order fraction α with respect to t: 

Dt
αu(t, x) ≈ Dt

αg0(t) + xDt
αK(t) + (I2Ψm×m

 (x))
T
Cm×m
 (I2−αΨm×m(t))            (64) 

And we will have: 

Dt
αK(t) = Dt

αg1(t)−Dt
αg0(t) − (I

2Ψm×m
 (1))

T
Cm×m
 (I2−αΨm×m(t))               (65) 

Now convert all approximations (≈) to equals (=), and place equations (58), (59), (63) and (65) in 

Equation (45), the following linear equation is obtained: 

 

Dt
αg0(tj) + xiDt

α
 
K(tj) + (I

2Ψm×m
 (xi))

T
Cm×m
 (I2−αΨm×m(t)) −

1

2
σ2xi

2(f0
″(xi) + tjf1

″(xi) +

ΨT
m×m
 

(xi)Cm×m
 (Ψ2

m×m
(tj))) + (β − 2σ

2)xi(K(tj) + f0
′(xi) − f0

′(0) + tj(f1
′(xi)−f1

′(0)) +

(IΨ 
m×m
 (xi))

TCm×m
 (Ψ2

m×m
(tj))) + (β − σ

2)(g0(tj) + xiK(tj) + (f0(xi) − f0(0) − xif0
′(0)) +

tj(f1(xi) − f1(0) − xif1
′(0)) + (I2Ψm×m

 (xi))
T
Cm×m
 (I2Ψm×m(tj)) = R(xi, tj)   (66) 

 

5- Solving numerical examples 

Numerical solutions and errors are calculated, evaluated, and provided in tables after evaluating 

certain numerical instances with conditions of varying initial values. The MATLAB software is 

used to solve all of the examples.  

 

Example 1: In equation 1, by placing, 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 , 

Initial conditions: 

u(0, x) = 0, 𝑢𝑡(0, 𝑥) = 0,      0 ≤ 𝑥 ≤ 1 

Boundary conditions: 

u(𝑡, 0) = 0,    𝑢𝑡(𝑡, 1) = 0,    0 ≤ 𝑡 ≤ 1 

The right-side functions of the equation: 
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𝑅(𝑡, 𝑥) = (
2𝑡2−𝛼

𝛤(3 − 𝛼)
+
1

2
(𝜎𝑥𝑡𝜋)2 + (𝛽 − 𝜎2)𝑡2) 𝑠𝑖𝑛(𝜋𝑥) + (𝛽 − 2(𝜎)2)𝑡2𝑥𝜋 𝑐𝑜𝑠(𝜋𝑥) 

The accurate answer of this equation in example (1) is 𝑢(𝑡, 𝑥) = 𝑡2sin(𝜋𝑥). Example (1) is solved 

by the Bernoulli wavelet method for , 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2and its error is 

presented in Table 1. 

Table 1: example 1 error,by placing, 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

     α=1.9       α=1.7          α=1.5        α=1.3 α=1.1 (x,t) 

2.08*𝟏𝟎−𝟏𝟏 6.32*10−11 5.10*10−11 2.18*10−10 5.11*10−10 (1.13,1.13) 

4.06*𝟏𝟎−𝟖 5.47*10−8 2.34*10−8 1.84*10−8 4.02*10−8 (3.13,3.13) 

5.28*𝟏𝟎−𝟔 4.19*10−6 1.82*10−6 1.52*10−6 3.64*10−6 (5.13,5.13) 

3.64*𝟏𝟎−𝟓 2.94*10−5 3.01*10−5 2.01*10−5 2.74*10−5 (7.13,7.13) 

4.15*𝟏𝟎−𝟒 6.38*10−4 4.62*10−4 3.84*10−4 3.19*10−4 (9.13,9.13) 

2.07*𝟏𝟎−𝟕 3.55*10−7 2.14*10−7 1.04*10−7 1.59*10−7 (11.13,11.13) 

 

 

 
Figure 2: Relation of B and error for example 1 for 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

 

 

 
Figure 3: Approximate and exact solution, respectively for example 1 for 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2, 𝑚 = 3 , 𝑘 = 2 

 

The method of numerical solution for 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2is presented in Table 

(2). 

Table 2. the numerical solution of example 1 py placing , 𝛼 = 1.1  , 𝛽 = 1 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

   α=1.9      α=1.7     α=1.5      α=1.3 α=1.1 (x,t) 

2.53*𝟏𝟎−𝟒 2.53*10−4 2.54*10−4 2.54*10−4 2.55*10−4 (1.13,1.13) 

3.82*𝟏𝟎−𝟑 3.82*10−3 3.83*10−3 3.83*10−3 3.84*10−3 (3.13,3.13) 

1.62*𝟏𝟎−𝟐 1.62*10−2 1.63*10−2 1.63*10−2 1.64*10−2 (5.13,5.13) 

1.76*𝟏𝟎−𝟐 1.76*10−2 1.78*10−2 1.78*10−2 1.79*10−2 (7.13,7.13) 

2.11*𝟏𝟎−𝟐 2.11*10−2 2.12*10−2 2.12*10−2 2.13*10−2 (9.13,9.13) 

3.16*𝟏𝟎−𝟐 3.17*10−2 3.17*10−2 3.18*10−2 3.18*10−2 (11.13,11.13) 
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Example 2: the numerical solution of the following equation: 

In equation (1), by placing   α = 1.1  , β = 0.5 , σ = 0.2,m = 3 , k = 2, 

Initial conditions: 

u(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0,      0 ≤ 𝑥 ≤ 1 

Boundary conditions: 

u(𝑡, 0) = t3,    𝑢𝑡(𝑡, 1) = 𝑒𝑡3,    0 ≤ 𝑡 ≤ 1 

The right-side functions of the equation: 

𝑅(𝑡, 𝑥) = (
𝛤(4)

𝛤(4 − 𝛼)
𝑡3−𝛼 −

1

2
𝜎2𝑥2𝑡3 + (𝛽 − 2𝜎2)𝑥𝑡3 + (𝛽 − 𝜎2)𝑡3)𝑒𝑥  

The accurate response to this equation in example (2) is𝑢(𝑡, 𝑥) = 𝑡3𝑒𝑥   . Example (2) is solved by 

the Bernoulli wavelet method for 𝜶 = 1.1  , β = 0.5 , σ = 0.2,m = 3 , k = 2 and its error has been 

shown in Table (3).  

Table 3. The error of example 2, by placing 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

    α=1.9      α=1.7      α=1.5       α=1.3 α=1.1 (x,t) 

5.55*𝟏𝟎−𝟖 4.99*10−8 5.19*10−8 5.41*10−8 452*10−8 (1.13,1.13) 

4.34*𝟏𝟎−𝟔 4.47*10−6 4.63*10−7 4.12*10−6 3.74*10−6 (3.13,3.13) 

3.17*𝟏𝟎−𝟖 3.12*10−8 5.33*10−8 3.04*10−9 2.91*10−9 (5.13,5.13) 

2.37*𝟏𝟎−𝟒 2.39*10−4 3.55*10−4 2.14*10−4 2.74*10−4 (7.13,7.13) 

4.20*𝟏𝟎−𝟒 4.19*10−4 4.12*10−4 3.01*10−4 3.21*10−4 (9.13,9.13) 

1.33*𝟏𝟎−𝟑 1.67*10−3 2.01*10−3 1.44*10−3 1.18*10−3 (11.13,11.13) 

 

 

 
Figure 4: Relation of B and error for example2 for, 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

 

 

 
Figure 5: Approximate and exact solution, respectively example2 for, 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 
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In Table (4), the numerical solution method for 𝜶 = 𝟏. 𝟏  , 𝜷 = 𝟎. 𝟓 , 𝝈 = 𝟎. 𝟐,𝒎 = 𝟑 , 𝒌 = 𝟐 has 

been shown. 
Table 4: the numerical solution of example 2 by placing 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

    α=1.9      α=1.7       α=1.5 α=1.3 α=1.1 (x,t) 

5.52*𝟏𝟎−𝟒 5.53*10−4 5.53*10−4 5.54*10−4 5.55*10−4 (1.13,1.13) 

2.81*𝟏𝟎−𝟑 2.82*10−3 2.82*10−3 2.83*10−3 2.84*10−3 (3.13,3.13) 

1.51*𝟏𝟎−𝟐 1.53*10−2 1.53*10−2 1.54*10−2 1.55*10−2 (5.13,5.13) 

3.25*𝟏𝟎−𝟐 3.25*10−2 3.26*10−2 3.27*10−2 3.28*10−2 (7.13,7.13) 

1.10*𝟏𝟎−𝟐 1.11*10−2 1.11*10−2 1.12*10−2 1.13*10−2 (9.13,9.13) 

3.15*𝟏𝟎−𝟐 3.16*10−2 7.16*10−2 7.17*10−2 7.18*10−2 (11.13,11.13) 

 

Example 3: the numerical solution of the following equation: 

In equation (1), by placing , 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

Initial conditions: 

u(0, 𝑥) = 0, 𝑢𝑡(0, 𝑥) = 0,      0 ≤ 𝑥 ≤ 1 

Boundary conditions: 

u(𝑡, 0) = 0,    𝑢𝑡(𝑡, 1) = 𝑡
3𝑠𝑖𝑛2𝑥  ,    0 ≤ 𝑡 ≤ 1 

The right-side functions of the equation: 

𝑅(𝑡, 𝑥) = (
𝛤(4)

𝛤(4−𝛼)
𝑡3−𝛼 + (𝛽 − 𝜎2)𝑡3)𝑠𝑖𝑛2𝑥 − 𝜎2𝑥2𝑡3𝑐𝑜𝑠 (2𝑥) + (𝛽 − 𝜎2)𝑥𝑡3𝑠𝑖𝑛 (2𝑥)  

The accurate response to this equation in example (3) is𝑢(𝑡, 𝑥) = 𝑡3𝑠𝑖𝑛2𝑥   . Example (3) is solved 

by the Bernoulli wavelet method for 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 and its error has 

been shown in Table (5).  

Table5. The error of example 3, by placing 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.1 (x,t) 

5.60*𝟏𝟎−𝟖 4.84*10−8 5.19*10−8 5.85*10−8 352*10−8 (1.13,1.13) 

4.23*𝟏𝟎−𝟔 4.55*10−6 4.63*10−7 4.24*10−6 3.18*10−6 (3.13,3.13) 

3.27*𝟏𝟎−𝟖 3.11*10−8 5.02*10−8 3.11*10−9 2.91*10−9 (5.13,5.13) 

2.21*𝟏𝟎−𝟒 2.44*10−4 3.44*10−4 2.20*10−4 2.45*10−4 (7.13,7.13) 

4.37*𝟏𝟎−𝟒 4.45*10−4 4.19*10−4 3.21*10−4 3.39*10−4 (9.13,9.13) 

1.47*𝟏𝟎−𝟑 1.55*10−3 2.11*10−3 1.59*10−3 1.71*10−3 (11.13,11.13) 

 
 

 
Figure 6: Relation of B and error for example3 for, 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

 

 



161 Shaban Mohammadi et al. / Computational Sciences and Engineering 2(1) (2022) 143-163  161 

 

 
Figure 7: Approximate and exact solution, respectively for example3 for, 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

 

In Table (6), the numerical solution method for 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2has been 

shown. 

 
Table 6: the numerical solution of example 3by placing 𝛼 = 1.1  , 𝛽 = 0.5 , 𝜎 = 0.2,𝑚 = 3 , 𝑘 = 2 

α=1.9 α=1.7 α=1.5 α=1.3 α=1.1 (x,t) 

5.44*𝟏𝟎−𝟒 5.78*10−4 5.77*10−4 5.42*10−4 5.47*10−4 (1.13,1.13) 

2.79*𝟏𝟎−𝟑 2.74*10−3 2.75*10−3 2.76*10−3 2.75*10−3 (3.13,3.13) 

1.47*𝟏𝟎−𝟐 1.72*10−2 1.54*10−2 1.67*10−2 1.62*10−2 (5.13,5.13) 

3.33*𝟏𝟎−𝟐 3.36*10−2 3.36*10−2 3.33*10−2 3.31*10−2 (7.13,7.13) 

1.19*𝟏𝟎−𝟐 1.22*10−2 1.01*10−2 1.28*10−2 1.19*10−2 (9.13,9.13) 

3.01*𝟏𝟎−𝟐 3.43*10−2 7.42*10−2 7.37*10−2 7.63*10−2 (11.13,11.13) 

 
6. Discussion and conclusion 

In this paper, we employ the Bernoulli wavelet method to solve the Fokker-Planck-Kolmogorov 

time fractional-order differential equations. Accordingly, it is essential to be familiar with fractional 

calculus and wavelets. So, we initially introduced the Bernoulli and Bernoulli fractional-order 

wavelets, the Bernoulli polynomial, and Bernoulli fractional-order functions. In the following, we 

continued by introducing fractional integrals and derivatives and described approximation of 

functions by Bernoulli fractional-order wavelets and functions. Then, we obtained the 

transformation matrix of the Bernoulli fractional-order wavelet to Bernoulli fractional-order 

functions. Finally, we specified the operational matrix of the fractional integral and derivative 

Bernoulli fractional-order wavelet and the upper error bound for the operational matrix of Riemann-

Leouville fractional integral and operational matrix of fractional integral of Bernoulli fractional-

order wavelet. After introducing the operational matrix of the Bernoulli wavelet fractional integral, 

we used it to solve the Fokker-Planck-Kolmogorov fractional differential equations. After 

numerically solving the equation, we analyzed the error between the exact answer and the 

approximate answer obtained from the numerical method 
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