
 

 

Computational Sciences and Engineering 2(2) (2022) 227-238 
 

  

 

 

Computational Sciences and Engineering 

University of Guilan journal homepage: https://cse.guilan.ac.ir/ 
   

 

Algorithm Design and Theoretical Analysis of a New Bit Forwarding Large 

Integer Modular Exponentiation Algorithm 

Manizhe Abbasi a, Abdalhossein Rezai
 b,*

, Asghar Karimi
 a

 

a ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran 
b
 Department of Electrical Engineering, University of Science and Culture, Tehran, Iran 

 

A R T I C L E   I N F O  A B S T R A C T 

Article history: 

Received 1 January 2023 

Received in revised form 23 January 2023 

Accepted 13 February 2023 

Available online 13 February 2023 

 

 One of the most principal operations in many PKCs is Modular 

Exponentiation (ME). This operation is usually performed by successive 

modular multiplications. So, the efficiency of these PKCs is released on 

the efficiency of the Modular Multiplication (M2) and modular 

exponentiation implementation. Therefore, it is essential to minimize the 

execution time of the M2 and the number of required M2 for performing 

the ME operation. This paper proposes a novel ME algorithm. In the 

developed algorithm, the Bit Forwarding (BF) and multibit-scan-
multibit-shift techniques are employed for the performance 

improvement in the ME operation. The complexity analysis is 

accomplished to show that the developed exponentiation algorithm has 

benefit in the number of required multiplications. The results indicate 

that the presented algorithm improves the results compared to other 

modular exponentiation algorithms by about 11%-85%. 
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1. Introduction  

Cornerstone operation in many computers arithmetic fields such as Public-Key Cryptography (PKC) 

is Modular Exponentiation (ME), C = ME, wherein E is called exponent and N called modulus. 

The ME includes a series of repeated Modular Multiplications (M2s). Therefore, the efficiency of 

the ME is affected by efficient execution of the M2s [3]. As a result, the performance of many 

computers arithmetic operations is determined by the performance of the M2 operation and the 

required M2 count [11,12]. 

 
* Corresponding author. 

   E-mail addresses: rezai@usc.ac.ir; mzhabbasi@gmail.com; karimi@jdeihe.ac.ir  
 

 

 

https://doi.org/10.22124/cse.2023.23755.1041 

© 2021 Published by University of Guilan  

mailto:rezai@usc.ac.ir
mailto:mzhabbasi@gmail.com
mailto:karimi@jdeihe.ac.ir
https://doi.org/10.22124/cse.2023.23755.1041


228 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 228 

 

The Montgomery M2 algorithm is the most commonly used algorithm for efficient implementation 

of M2 [7]. It can perform the trial division by using shift and binary addition operations, which can 

implement using simple hardware, but it consumes a lot of time. 

There are several techniques and architectures to improve the performance of the multiplication 

method such as high-radix [6, 8, 13, 14], systolic array [19,24], carry-save addition [13,17], and 

scalable architecture [5,15]. 

Recently, Rezai and Keshavarzi proposed a novel integer representation based on the Modified 

Canonical Recoding (MCR) technique for the multiplier in [13]. Using this representation for 

multiplier in the multiplication, three operations, including sequence multiplication by zero bits, 

required additions, and the non-zero digit multiplication are calculated in one clock cycle using 

multibit-shift technique and one binary addition. Hamming weight of this representation for the 

multiplier is  n/3, that leads to significant reduction of required partial multiplications. They 

improved this M2 algorithm in [14] and presented compact SD M2 algorithm. 

On the other hand, binary method is most widely used and well-recognized method to compute a 

ME, which employs the binary representation of the exponent E and consists of a long chain of 

squaring and multiplication operations. In recent years, many new and hybrid methods for 

implementation of ME are created including, sliding window method [10], M-ary method [9], 

Common-Multiplicand-Multiplication (CMM) method [4, 11, 12, 16, 21, 22, 23], signed-digit 

recoding technique [2, 14, 20, 22] and Bit Forwarding (BF) technique [18]. 

Recently, Vollala et. al. [18] have offered bit forwarding techniques for decreasing the required M2s 

count in the ME. They also provided Montgomery M2 based on BF technique in radix-2 and high-

radix versions. 

This study develops and evaluates novel exponentiation algorithm. The proposed algorithm utilizes 

the BF technique for decreasing the required multiplications in ME and utilizes the multibit-scan-

multibit-shift technique in the multiplier for reducing the complexity of the M2 in the ME operation. 

The complexity analysis show that the developed ME algorithm has advantages compared to other 

ME algorithms. 

The content of this paper is structured as follows: Section 2 explains the background of the proposed 

ME. Section 3 presents the developed ME algorithm. Complexity analysis and comparison results 

are provided in section 4. Conclusion of this research is afforded in section 5. 

 2.  Background  

2.1. Montgomery M2  

Montgomery M2 algorithm is a method for multiplying two integers modulo M. This algorithm 

computes X. Y. (2−n) mod M, while avoiding division by M. The main idea in this algorithm is to 

transform the integers to the m-residues and then compute the multiplication. Finally, the achieved 

results are transformed back. Algorithm 1 displays the simplest Montgomery M2 algorithm [7, 11, 

12]. 
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The n-bit integers multiplier, multiplicand, and modulus are indicated by X, Y, and M, respectively. 

It should be noted that M is an odd integer. The S(n)=X.Y.2-n mod M, indicates the output. Although 

this algorithm is simple for hardware implementation, it is a time-consuming algorithm. Therefore, 

several improvements have been proposed for this algorithm [7, 8, 13, 14, 19, 24].  

Montgomery M2 algorithm can improve using new hybrid architectures such as combination Carry 

Save Adder (CSA) architecture with high-radix technique [6, 8, 11, 12]. High-radix M2 process 

several bits at each clock cycle instead of several clock cycles. Algorithm 2 displays the high-radix 

CSA Montgomery M2 algorithm [12]. 

 

In algorithm 2, the number of required clock cycles for radix-2^r is also reduced to n/r [17]. 

Recently, Rezai and Keshavarzi [13] have offered Variable Length Montgomery M2 (VLM3) 

algorithm. This algorithm is able to decrease the critical path in the high-radix CSA Montgomery  

M2 algorithm by relaxing the high-radix partial multiplication. They used the MCR representation 

[12] for X in the M2 algorithm. With this innovation, the high-radix partial multiplication X(i). Y is 

simplified to the binary partial multiplication. Algorithm 3 shows the VLM3 algorithm. 
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Inputs of this algorithm are X_MCR, Y, and M, where X_MCR shows the multiplier in the MCR 

representation [12], but multiplicand and modulus are n-bit integers. There are two terms in XMCR 

representation, ki, which is used to denote the sign of non-zero bit in every digit, and f(i), which is 

used to denote the length of the digit. In addition, Pc and Ps are carry and sum components of P [13]. 

2.2. ME algorithm 

The most commonly used method for implementing ME are Right-to-Left (R2L) and Left-to-Right 

(L2R) methods. The L2R ME method is presented in algorithm 4. 
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This algorithm computes ME mod N. The exponent bits are scanned from left to right, square and 

multiply operations are serially executed. There are 1.5k+2 multiplication operations to execute the 

ME [13]. 

The R2L ME algorithm is another way to evaluate ME mod N [13]. In this algorithm, exponent E is 

processed from right to left. Multiply and square operations can accomplish in parallel [13]. 

Therefore, k+2 multiplication operations are required to execute the ME algorithm. This algorithm 

is detailed in algorithm 5[13]. 

 

Recently, Vollala et. al. [18] have presented the BF techniques to decrease the required M2 in the 

ME. The objective of the presented BF techniques [18] is to optimize the efficiency by decreasing 

the utilized clock cycles. This method can improve the performance of the ME algorithms. The BF 

ME algorithm is displays in algorithm 6 [18]. 
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In algorithm 6, AMM is recognized that as customized Montgomery multiplication algorithm 

according to BF technique [18]. In the BF technique, for every pair of ones in the exponent, one bit 

is forwarded and then the partial production is multiplied with M2c−1 = M2C−1mod N. Moreover, 

M1 value and a cubic value  M3 = M3mod N have been pre-computed and stored in registers. 

 3. The proposed algorithms for ME 

This section presents novel modified ME algorithms to evaluate ME mod N. The proposed 

algorithms use the VLM3 algorithm, MCR representation and BF technique. The proposed 

algorithms, namely BF-MCR1 and BF-MCR2 mention to bit forwarding 1-bit and bit forwarding 2-

bits, respectively. The proposed algorithms have the following characteristics:  

a) The MCR representation is applied to multiplier. The encoded multiplier guarantees 

minimum Hamming weight. However, format conversions from the binary into its MCR in 

the proposed algorithms are performed. 

b) The performance of the binary algorithm can be improved using the BF technique. This 

technique can decrease the required M2 using forwarding consecutive ones in the exponent.  

c) The multiplications are performed using the VLM3 algorithm, in which the ME algorithm 

take less clock cycles. 

3.1. The proposed BF-MCR1 ME algorithm 

The proposed BF-MCR1 ME algorithm, which employs the VLM3 algorithm, is explained in 

algorithm 7. 
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In this algorithm, M* denotes M in Montgomery domain, M2 and M3 denote M2mod N and M3 mod 

N, respectively. In the exponentiation phase, the T[i+1] in the binary representation is converted to 

the MCR representation in step 13. Moreover, a pair of successive 1’s in the exponent is scanned 

independently. If it is identified, then one bit will forward, and the partial result is multiplied with 

M3 as described in Algorithm 7. 

3.2. The proposed BF-MCR2 ME algorithm 

The proposed BF-MCR2 ME algorithm, which employs the VLM3 algorithm, is explained in 

algorithm 8. 
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As given in algorithm 8, M*, M2, M3, M6, M7 denote M in Montgomery domain, M2mod N, M3 

mod N, M6 mod N, and M7 mod N, respectively. M3 and M7 values need to pre-compute and store 

in two registers. To reduce the M2s, the BF-MCR2 checks for three successive 1’s in the exponent, 

if it is identified, then 2 bits is forwarded, and the result is multiplied by M7. The BF-MCR2 also 

checks for a pair of successive 1's in the exponent. If it is identified, then one bit will be forwarded, 

and the partial result will be multiplied by M3.  
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  4. Complexity analysis of the developed ME algorithms   

In this section, we provide the theoretical analysis for efficiency of the proposed BF-MCR ME 

algorithms.  

Based on [18], for k-bit exponent and kτ non-zero bits in the exponent, with c pairs of consecutive 

ones, the required multiplication steps (clock cycles) in the BF-MCR1 algorithm is        

n*(n/3+6)*(k+kτ -c+1), where n denotes the modulus bit length. 

  Similarly, the average number of required multiplication steps for BF-MCR2 algorithm is 

n*(n/3+6)*(k+kτ -c-2∙d+4), where d is the number of three successive ones.  

However, the Montgomery ME algorithms such as [18] (for BF1) and [18] (for BF2) require 

n*(n+3)*(k+kτ -c) and n(n+1)(k+kτ -c-2∙d+4) multiplication steps respectively as shown in Table 

1. 

 

Table 2 summarizes the expected number of M2s for the different exponentiation algorithms. 

 

 

Table 3 and table 4 summarize the multiplication steps improvements for the BF-MCR1 and BF-

MCR2 ME algorithms in comparison with the ME algorithms in [1, 4, 12, 18, 22] for 2048-bit 

exponent.  It should be noted that values in table 2 are calculated using Table II, and Table III in 

[18]. 



236 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 236 

 

 

 

Based on our analysis, which are shown in table 3, the BF-MCR1 algorithm are able to decrease the 

required M2 for 2048-bit exponent in comparison with [1, 4, 12, 18, 22] by about 85%, 82.1%, 

26.5%, 66.4%, and 75.5%, respectively. 

  Similarly, based on our analysis, which are displayed in table 4, the BF-MCR2 algorithm are able 

to decrease the required M2 for 2048-bit exponent in comparison with [1, 4, 12, 18, 22] by about 

85.9%, 83.1%, 30.6%, 66.4%, and 76.9%, respectively.  

In addition, in the developed BF-MCR1 ME algorithm, the average required multiplication steps is 

decreased in comparison with [1, 4, 12, 18 (for BF1), 22] by about 

 

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

1.5k ∗ (2𝑛2 + n)
∗ 100 ≈ 85  % 

  

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

0.5k ∗ (5𝑛2 + 4n)
∗ 100 ≈ 82  %             

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

0.611k ∗ (𝑛2 − 5𝑛 − 6)
∗ 100 ≈ 29  % 

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

n ∗ (n + 3) ∗ (k + 𝑘𝜏 − c + 1)
∗ 100 ≈ 66.7 % 

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

1.833k ∗ (𝑛2 − 𝑛 − 2)
∗ 100 ≈ 76 % 

 

Similarly, in the BF-MCR2 ME algorithm, the average required multiplication steps is decreased in 

comparison with [1, 4, 12, 18 (for BF2), 22] by about 

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

1.5k ∗ (2𝑛2 + n)
∗ 100 ≈ 86  % 
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1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

0.5k ∗ (5𝑛2 + 4n)
∗ 100 ≈ 83  %             

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

0.611k ∗ (𝑛2 − 5𝑛 − 6)
∗ 100 ≈ 31  % 

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

n ∗ (n + 3) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)
∗ 100 ≈ 66.7 % 

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

1.833k ∗ (𝑛2 − 𝑛 − 2)
∗ 100 ≈ 77 % 

 

Based on our analysis, the developed ME algorithms reduce the multiplication steps considerably 

regarding to other ME algorithms in [1, 4, 12, 18 22]. 

 5. Conclusion 

In this study, two algorithms are presented to evaluate ME mod N, which are named BF-MCR1 and 

BF-MCR2. These novel algorithms provide improvements in terms of the number of required 

multiplication steps. These improvements in the number of required multiplications are obtained by 

performing the MCR representation, the VLM3 algorithm and BF technique. So, the number of 

required partial multiplications are considerably decreased, which have a good impact on the 

efficiency of the proposed ME algorithms. Moreover, by performing the BF technique in the BF-

MCR ME algorithms using forwarding consecutive ones in the exponent, the efficiency of the ME 

methods is improved. Our complexity analysis indicate that the average required multiplication 

steps in the developed BF-MCR1 ME algorithm are improved for 2048-bit exponent in comparison 

with [1, 4, 12, 18, 22] by about 85%, 82.1%, 26.5%, 66.4%, and 75.5%, respectively. Moreover, the 

average required multiplication steps in the developed BF-MCR2 ME algorithm are improved for 

2048-bit exponent in comparison with [1, 4, 12, 18, 22] by about 85.9%, 83.1%, 30.6%, 66.4%, 

76.9%, respectively. 
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