

Computational Sciences and Engineering 2(2) (2022) 227-238

Computational Sciences and Engineering

University of Guilan journal homepage: https://cse.guilan.ac.ir/

Algorithm Design and Theoretical Analysis of a New Bit Forwarding Large

Integer Modular Exponentiation Algorithm

Manizhe Abbasi a, Abdalhossein Rezai
 b,*

, Asghar Karimi
 a

a ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
b
 Department of Electrical Engineering, University of Science and Culture, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Article history:

Received 1 January 2023

Received in revised form 23 January 2023

Accepted 13 February 2023

Available online 13 February 2023

 One of the most principal operations in many PKCs is Modular

Exponentiation (ME). This operation is usually performed by successive

modular multiplications. So, the efficiency of these PKCs is released on

the efficiency of the Modular Multiplication (M2) and modular

exponentiation implementation. Therefore, it is essential to minimize the

execution time of the M2 and the number of required M2 for performing

the ME operation. This paper proposes a novel ME algorithm. In the

developed algorithm, the Bit Forwarding (BF) and multibit-scan-
multibit-shift techniques are employed for the performance

improvement in the ME operation. The complexity analysis is

accomplished to show that the developed exponentiation algorithm has

benefit in the number of required multiplications. The results indicate

that the presented algorithm improves the results compared to other

modular exponentiation algorithms by about 11%-85%.

Keywords:

Modular exponentiation

Bit forwarding technique

Modular multiplication

Complexity analysis

Multibit-scan-multibit-shift technique

1. Introduction

Cornerstone operation in many computers arithmetic fields such as Public-Key Cryptography (PKC)

is Modular Exponentiation (ME), C = ME, wherein E is called exponent and N called modulus.

The ME includes a series of repeated Modular Multiplications (M2s). Therefore, the efficiency of

the ME is affected by efficient execution of the M2s [3]. As a result, the performance of many

computers arithmetic operations is determined by the performance of the M2 operation and the

required M2 count [11,12].

* Corresponding author.

 E-mail addresses: rezai@usc.ac.ir; mzhabbasi@gmail.com; karimi@jdeihe.ac.ir

https://doi.org/10.22124/cse.2023.23755.1041

© 2021 Published by University of Guilan

mailto:rezai@usc.ac.ir
mailto:mzhabbasi@gmail.com
mailto:karimi@jdeihe.ac.ir
https://doi.org/10.22124/cse.2023.23755.1041

228 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 228

The Montgomery M2 algorithm is the most commonly used algorithm for efficient implementation

of M2 [7]. It can perform the trial division by using shift and binary addition operations, which can

implement using simple hardware, but it consumes a lot of time.

There are several techniques and architectures to improve the performance of the multiplication

method such as high-radix [6, 8, 13, 14], systolic array [19,24], carry-save addition [13,17], and

scalable architecture [5,15].

Recently, Rezai and Keshavarzi proposed a novel integer representation based on the Modified

Canonical Recoding (MCR) technique for the multiplier in [13]. Using this representation for

multiplier in the multiplication, three operations, including sequence multiplication by zero bits,

required additions, and the non-zero digit multiplication are calculated in one clock cycle using

multibit-shift technique and one binary addition. Hamming weight of this representation for the

multiplier is n/3, that leads to significant reduction of required partial multiplications. They

improved this M2 algorithm in [14] and presented compact SD M2 algorithm.

On the other hand, binary method is most widely used and well-recognized method to compute a

ME, which employs the binary representation of the exponent E and consists of a long chain of

squaring and multiplication operations. In recent years, many new and hybrid methods for

implementation of ME are created including, sliding window method [10], M-ary method [9],

Common-Multiplicand-Multiplication (CMM) method [4, 11, 12, 16, 21, 22, 23], signed-digit

recoding technique [2, 14, 20, 22] and Bit Forwarding (BF) technique [18].

Recently, Vollala et. al. [18] have offered bit forwarding techniques for decreasing the required M2s

count in the ME. They also provided Montgomery M2 based on BF technique in radix-2 and high-

radix versions.

This study develops and evaluates novel exponentiation algorithm. The proposed algorithm utilizes

the BF technique for decreasing the required multiplications in ME and utilizes the multibit-scan-

multibit-shift technique in the multiplier for reducing the complexity of the M2 in the ME operation.

The complexity analysis show that the developed ME algorithm has advantages compared to other

ME algorithms.

The content of this paper is structured as follows: Section 2 explains the background of the proposed

ME. Section 3 presents the developed ME algorithm. Complexity analysis and comparison results

are provided in section 4. Conclusion of this research is afforded in section 5.

 2. Background

2.1. Montgomery M2

Montgomery M2 algorithm is a method for multiplying two integers modulo M. This algorithm

computes X. Y. (2−n) mod M, while avoiding division by M. The main idea in this algorithm is to

transform the integers to the m-residues and then compute the multiplication. Finally, the achieved

results are transformed back. Algorithm 1 displays the simplest Montgomery M2 algorithm [7, 11,

12].

 229 Abdalhossein Rezai et al. / Computational Sciences and Engineering 2(2) (2022) 227-238 229

The n-bit integers multiplier, multiplicand, and modulus are indicated by X, Y, and M, respectively.

It should be noted that M is an odd integer. The S(n)=X.Y.2-n mod M, indicates the output. Although

this algorithm is simple for hardware implementation, it is a time-consuming algorithm. Therefore,

several improvements have been proposed for this algorithm [7, 8, 13, 14, 19, 24].

Montgomery M2 algorithm can improve using new hybrid architectures such as combination Carry

Save Adder (CSA) architecture with high-radix technique [6, 8, 11, 12]. High-radix M2 process

several bits at each clock cycle instead of several clock cycles. Algorithm 2 displays the high-radix

CSA Montgomery M2 algorithm [12].

In algorithm 2, the number of required clock cycles for radix-2^r is also reduced to n/r [17].

Recently, Rezai and Keshavarzi [13] have offered Variable Length Montgomery M2 (VLM3)

algorithm. This algorithm is able to decrease the critical path in the high-radix CSA Montgomery

M2 algorithm by relaxing the high-radix partial multiplication. They used the MCR representation

[12] for X in the M2 algorithm. With this innovation, the high-radix partial multiplication X(i). Y is

simplified to the binary partial multiplication. Algorithm 3 shows the VLM3 algorithm.

230 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 230

Inputs of this algorithm are X_MCR, Y, and M, where X_MCR shows the multiplier in the MCR

representation [12], but multiplicand and modulus are n-bit integers. There are two terms in XMCR

representation, ki, which is used to denote the sign of non-zero bit in every digit, and f(i), which is

used to denote the length of the digit. In addition, Pc and Ps are carry and sum components of P [13].

2.2. ME algorithm

The most commonly used method for implementing ME are Right-to-Left (R2L) and Left-to-Right

(L2R) methods. The L2R ME method is presented in algorithm 4.

 231 Abdalhossein Rezai et al. / Computational Sciences and Engineering 2(2) (2022) 227-238 231

This algorithm computes ME mod N. The exponent bits are scanned from left to right, square and

multiply operations are serially executed. There are 1.5k+2 multiplication operations to execute the

ME [13].

The R2L ME algorithm is another way to evaluate ME mod N [13]. In this algorithm, exponent E is

processed from right to left. Multiply and square operations can accomplish in parallel [13].

Therefore, k+2 multiplication operations are required to execute the ME algorithm. This algorithm

is detailed in algorithm 5[13].

Recently, Vollala et. al. [18] have presented the BF techniques to decrease the required M2 in the

ME. The objective of the presented BF techniques [18] is to optimize the efficiency by decreasing

the utilized clock cycles. This method can improve the performance of the ME algorithms. The BF

ME algorithm is displays in algorithm 6 [18].

232 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 232

In algorithm 6, AMM is recognized that as customized Montgomery multiplication algorithm

according to BF technique [18]. In the BF technique, for every pair of ones in the exponent, one bit

is forwarded and then the partial production is multiplied with M2c−1 = M2C−1mod N. Moreover,

M1 value and a cubic value M3 = M3mod N have been pre-computed and stored in registers.

 3. The proposed algorithms for ME

This section presents novel modified ME algorithms to evaluate ME mod N. The proposed

algorithms use the VLM3 algorithm, MCR representation and BF technique. The proposed

algorithms, namely BF-MCR1 and BF-MCR2 mention to bit forwarding 1-bit and bit forwarding 2-

bits, respectively. The proposed algorithms have the following characteristics:

a) The MCR representation is applied to multiplier. The encoded multiplier guarantees

minimum Hamming weight. However, format conversions from the binary into its MCR in

the proposed algorithms are performed.

b) The performance of the binary algorithm can be improved using the BF technique. This

technique can decrease the required M2 using forwarding consecutive ones in the exponent.

c) The multiplications are performed using the VLM3 algorithm, in which the ME algorithm

take less clock cycles.

3.1. The proposed BF-MCR1 ME algorithm

The proposed BF-MCR1 ME algorithm, which employs the VLM3 algorithm, is explained in

algorithm 7.

 233 Abdalhossein Rezai et al. / Computational Sciences and Engineering 2(2) (2022) 227-238 233

In this algorithm, M* denotes M in Montgomery domain, M2 and M3 denote M2mod N and M3 mod

N, respectively. In the exponentiation phase, the T[i+1] in the binary representation is converted to

the MCR representation in step 13. Moreover, a pair of successive 1’s in the exponent is scanned

independently. If it is identified, then one bit will forward, and the partial result is multiplied with

M3 as described in Algorithm 7.

3.2. The proposed BF-MCR2 ME algorithm

The proposed BF-MCR2 ME algorithm, which employs the VLM3 algorithm, is explained in

algorithm 8.

234 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 234

As given in algorithm 8, M*, M2, M3, M6, M7 denote M in Montgomery domain, M2mod N, M3

mod N, M6 mod N, and M7 mod N, respectively. M3 and M7 values need to pre-compute and store

in two registers. To reduce the M2s, the BF-MCR2 checks for three successive 1’s in the exponent,

if it is identified, then 2 bits is forwarded, and the result is multiplied by M7. The BF-MCR2 also

checks for a pair of successive 1's in the exponent. If it is identified, then one bit will be forwarded,

and the partial result will be multiplied by M3.

 235 Abdalhossein Rezai et al. / Computational Sciences and Engineering 2(2) (2022) 227-238 235

 4. Complexity analysis of the developed ME algorithms

In this section, we provide the theoretical analysis for efficiency of the proposed BF-MCR ME

algorithms.

Based on [18], for k-bit exponent and kτ non-zero bits in the exponent, with c pairs of consecutive

ones, the required multiplication steps (clock cycles) in the BF-MCR1 algorithm is

n*(n/3+6)*(k+kτ -c+1), where n denotes the modulus bit length.

 Similarly, the average number of required multiplication steps for BF-MCR2 algorithm is

n*(n/3+6)*(k+kτ -c-2∙d+4), where d is the number of three successive ones.

However, the Montgomery ME algorithms such as [18] (for BF1) and [18] (for BF2) require

n*(n+3)*(k+kτ -c) and n(n+1)(k+kτ -c-2∙d+4) multiplication steps respectively as shown in Table

1.

Table 2 summarizes the expected number of M2s for the different exponentiation algorithms.

Table 3 and table 4 summarize the multiplication steps improvements for the BF-MCR1 and BF-

MCR2 ME algorithms in comparison with the ME algorithms in [1, 4, 12, 18, 22] for 2048-bit

exponent. It should be noted that values in table 2 are calculated using Table II, and Table III in

[18].

236 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 236

Based on our analysis, which are shown in table 3, the BF-MCR1 algorithm are able to decrease the

required M2 for 2048-bit exponent in comparison with [1, 4, 12, 18, 22] by about 85%, 82.1%,

26.5%, 66.4%, and 75.5%, respectively.

 Similarly, based on our analysis, which are displayed in table 4, the BF-MCR2 algorithm are able

to decrease the required M2 for 2048-bit exponent in comparison with [1, 4, 12, 18, 22] by about

85.9%, 83.1%, 30.6%, 66.4%, and 76.9%, respectively.

In addition, in the developed BF-MCR1 ME algorithm, the average required multiplication steps is

decreased in comparison with [1, 4, 12, 18 (for BF1), 22] by about

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

1.5k ∗ (2𝑛2 + n)
∗ 100 ≈ 85 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

0.5k ∗ (5𝑛2 + 4n)
∗ 100 ≈ 82 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

0.611k ∗ (𝑛2 − 5𝑛 − 6)
∗ 100 ≈ 29 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

n ∗ (n + 3) ∗ (k + 𝑘𝜏 − c + 1)
∗ 100 ≈ 66.7 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c + 1)

1.833k ∗ (𝑛2 − 𝑛 − 2)
∗ 100 ≈ 76 %

Similarly, in the BF-MCR2 ME algorithm, the average required multiplication steps is decreased in

comparison with [1, 4, 12, 18 (for BF2), 22] by about

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

1.5k ∗ (2𝑛2 + n)
∗ 100 ≈ 86 %

 237 Abdalhossein Rezai et al. / Computational Sciences and Engineering 2(2) (2022) 227-238 237

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

0.5k ∗ (5𝑛2 + 4n)
∗ 100 ≈ 83 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

0.611k ∗ (𝑛2 − 5𝑛 − 6)
∗ 100 ≈ 31 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

n ∗ (n + 3) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)
∗ 100 ≈ 66.7 %

1 −
n ∗ (

n
3 + 6) ∗ (k + 𝑘𝜏 − c − 2 ∙ d + 4)

1.833k ∗ (𝑛2 − 𝑛 − 2)
∗ 100 ≈ 77 %

Based on our analysis, the developed ME algorithms reduce the multiplication steps considerably

regarding to other ME algorithms in [1, 4, 12, 18 22].

 5. Conclusion

In this study, two algorithms are presented to evaluate ME mod N, which are named BF-MCR1 and

BF-MCR2. These novel algorithms provide improvements in terms of the number of required

multiplication steps. These improvements in the number of required multiplications are obtained by

performing the MCR representation, the VLM3 algorithm and BF technique. So, the number of

required partial multiplications are considerably decreased, which have a good impact on the

efficiency of the proposed ME algorithms. Moreover, by performing the BF technique in the BF-

MCR ME algorithms using forwarding consecutive ones in the exponent, the efficiency of the ME

methods is improved. Our complexity analysis indicate that the average required multiplication

steps in the developed BF-MCR1 ME algorithm are improved for 2048-bit exponent in comparison

with [1, 4, 12, 18, 22] by about 85%, 82.1%, 26.5%, 66.4%, and 75.5%, respectively. Moreover, the

average required multiplication steps in the developed BF-MCR2 ME algorithm are improved for

2048-bit exponent in comparison with [1, 4, 12, 18, 22] by about 85.9%, 83.1%, 30.6%, 66.4%,

76.9%, respectively.

References

 S. R. Dusse and B. S Kaliski, A cryptographic library for the Motorola DSP 56000. Proc. Of Adv.

Cryptol. EUROCRYPT’90. 73 (1990) 230–244.

 O. Egecioglu and C. K. Koc, Exponentiation using Canonical Recoding. Theoret. Comput.Sci. 129 (1994)
407–417.

 Daniel M.Gordon, A survey of fast exponentiation methods. Journal of algorithms. 27(1998) 129-146.

 J. C. Ha and S. J. Moon, A common-multiplicand method to the Montgomery algorithm for speeding up

exponentiation. Inf. Process. Lett. 66 (1998) 105–107.
 M. Huang, K. Gaj and T. El-Ghazawi, New hardware architectures for Montgomery modular

multiplication algorithm. IEEE Trans. Comput. 60 (2011) 923-936.

 S.-R. Kuang, J. P. Wang, K. C. Chang, and H. W. Hsu, Energy-efficient high-throughput Montgomery
modular multipliers for RSA cryptosystems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(2013)

1999–2009.
 P.L. Montgomery, Modular multiplication without trial division. Math. Comput. 44 (1985) 519–521.
 A. Miyamoto, N. Homma, T. Aoki and A. Satoh, Systematic design of RSA processors based on high-

radix Montgomery multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.19 (2011) 1136–1146.

238 Abdalhossein Rezai et al./ Computational Sciences and Engineering 2(2) (2022) 227-238 238

 L.M. Mourelle and N. Nedjah, Fast reconfigurable hardware for the m-ary modular exponentiation. Proc.

Euromicro Symp. on Digital System Design: Architectures, Methods and Tools . (2004) 516–523.

 N. Nedjah and L. M. Mourelle, Efficient hardware for modular exponentiation using the sliding-window

method with variable-length partitioning. in Proc. 9th Int. Conf. Young Comput. Sci. (2008) 1980–1985.
 A.Rezai and P.Keshavarzi, A new CMM-NAF modular exponentiation algorithm by using a new modular

multiplication algorithm. Trends in applied sciences research. 7(2012) 240-247.

 A.Rezai and P.Keshavarzi, Algorithm design and theorical analysis of a novel CMM modular
exponentiation algorithm for large integers.RAIRO, Theor, Inf. appl. 49(2015) 255-268.

 A. Rezai and P. Keshavarzi, High-Throughput Modular Multiplication and Exponentiation Algorithm

Using Multibit-Scan-Multibit-Shift technique. IEEE Trans. VLSI syst. 23(2015) 1710-1719.
 A. Rezai and P. Keshavarzi, Compact SD: A New Encoding Algorithm and Its Application in

Multiplication. Int. j. comput. Math.94 (2017) 554-569.

 A.Rezai and P.Keshavarzi, high-performance scalable architecture for modular multiplication using a new

digit-serial computation, Microelectronics journal. 55 (2016) 169-178.
 A.Rezai and P.Keshavarzi, High-perormance modular exponentiation algorithm by using a new modified

modular multiplication algorithm and common-multiplicand multiplication method, 2011 World

Congress on Internet Security (WorldCIS-2011), London. (2011) 192-197.
 G. D. Sutter, J. P. Deschamps and J. L. Imana, Modular multiplication and exponentiation architecture

for fast RSA cryptosystem based on digit serial computation, IEEE Trans. Ind. Electron. 58 (2011) 3101-

3109.

 [18] S.Vollala, K.Geetha and N.Ramasubramanian, Efficient modular exponential algorithms compatible
with hardware implementation of public-key cryptography. Security Comm. Networks. 9 (2016) 3105–

3115

 C. D. Walter, Systolic modular multiplication, IEEE Trans. Comput.42 (1993) 376-378.
 C. L. Wu, D. C. Lou and T. J. Chang, An Efficient Montgomery Exponentiation Algorithm for Public-

key Cryptosystem. In Proc. of IEEE. Int. Conf. Intell. Security Inform., Taipei,Taiwan (2008) 284–285

 C. L. Wu, D. C. Lou and T. J. Chang, Fast modular multiplication based on complement representation
and canonical recoding. Int. J. comput. Math. 87 (2010) 2871–2879

 C.L. Wu, An efficient common-multiplicand-multiplication method to the Montgomery algorithm for

speeding up exponentiation. Inform. Sci. 179 (2009) 410-421.
 T. Wu, S. Li, and L. Liu, Fast, compact and symmetric modular exponentiation architecture by common-

multiplicand Montgomery modular multiplications. Integr., VLSI J. 36(2013) 323–332.

 J. Xie, J. J. He and P. K. Meher, Low latency systolic Montgomery multiplier for finite field GF(2m)
based on pentanomials, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 (2013) 385-389.

