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 Quintic B-spline basis functions have been found to be highly suitable 

for solving fourth-order partial differential equations. These basis 

functions possess the necessary smoothness and flexibility to 

accurately represent complex solutions. They offer advantages such as 

local support, compactness, and efficient computational 

implementation. In this paper, we use quantic B-spline basis functions 

to solve a class of nonlinear fourth order initial-boundary value 

problem. We show that our method work well. A numerical example is 

presented and we compare our proposed method with exact solution. 
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1. Introduction  

Splines and B-splines are mathematical functions commonly used for interpolation and 

approximation in various fields, including computer graphics, computer-aided design, and 

numerical analysis. Both splines and B-splines offer flexible and smooth representations of curves 

and surfaces [1,4]. 

A spline is a piecewise-defined function that consists of polynomial segments joined together with 

certain continuity conditions. It is typically used to interpolate or approximate data points by 

constructing a smooth curve or surface that passes through or near the given points. Splines can be 

defined using different types of basis functions, such as polynomials or B-splines [2,3]. 

B-splines, short for basis splines, are a specific type of spline functions that have gained 

significant popularity. B-splines are defined by a set of control points and a set of basis functions 

that determine the shape of the spline curve or surface. These basis functions are typically 

piecewise-defined polynomials that are combined and weighted according to the control points. B-
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splines offer several advantages, including local support, which means that the influence of each 

control point is limited to a small region of the curve or surface [5]. 

B-splines are widely used due to their flexibility, numerical stability, and efficient computational 

properties. They provide a versatile tool for representing and manipulating curves and surfaces in 

various applications. B-splines have been extended to different degrees, such as linear, quadratic, 

cubic, and higher-order B-splines, with each degree offering different levels of smoothness and 

accuracy [5]. 

Overall, splines and B-splines are powerful mathematical tools that provide a flexible and efficient 

way to represent curves and surfaces. Their versatility and wide range of applications make them 

fundamental in fields where interpolation, approximation, or curve/surface modeling is required. 

The utilization of Quintic B-spline basis functions has shown promise in addressing fourth-order 

partial differential equations. These basis functions provide a higher degree of smoothness and 

flexibility compared to lower-order splines, allowing for more accurate representations of the 

solution. They offer advantages such as local support, compactness, and efficient computational 

implementation. One study that explores the application of Quintic B-spline basis functions in 

solving fourth-order partial differential equations is given in [6]. This study delves into the 

numerical implementation and analysis of the Quintic B-spline collocation method for fourth-

order partial differential equations. It provides insights into the effectiveness and efficiency of this 

approach, highlighting its potential for various applications.  Additionally, another relevant 

reference is [4]. This paper offers a comparative analysis of different numerical methods utilizing 

Quintic B-spline functions for fourth-order partial differential equations. It examines the accuracy, 

stability, and computational efficiency of these methods, providing valuable insights for 

researchers and practitioners in the field.  

In this paper, we present a numerical scheme based on quantic B-spline basis function to solve a 

nonlinear fourth order initial boundary-value problems. Our method converges well and the given 

numerical solutions are in good compatible with their exact solution. 

The organization of this paper is as follows: 

In Section 2, we present the methodology solution. Type of discretization and the system of 

solution are discussed here. Also, type of linearization is expressed in this section. Finally, in 

Section 3, we present some numerical examples to confirm the correctness of our methodology. 

2. Methodology solution  

We consider the following differential equation: 

𝜕2𝑢

𝜕𝑡2
+𝒩(𝑢)

𝜕4𝑢

𝜕𝑥4
= 𝑓(𝑥, 𝑡),   0 < 𝑥 < 1, 0 < 𝑡 < 𝑇,   (1) 

 

with initial conditions 

 

𝑢(𝑥, 0) = 𝑢0(𝑥), 

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑢1(𝑥), 

(2) 
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and boundary conditions 

𝑢(0, 𝑡) = ℎ0(𝑡), 

𝑢(1, 𝑡) = ℎ1(𝑡), 

𝜕2𝑢

𝜕𝑥2
(0, 𝑡) = 𝑒0(𝑡), 

𝜕2𝑢

𝜕𝑥2
(1, 𝑡) = 𝑒1(𝑡). 

(3) 

Here, 𝒩 is the nonlinear term and the functions 𝑢𝑖(𝑥), ℎ𝑖(𝑡) and 𝑒𝑖(𝑡) for 𝑖 = 0,1 are known. 

2.1. Quintic B-spline functions 

In this section, we introduce the quantic B-spline basis functions. To this end, consider the nodal 

points (𝑥𝑗 , 𝑡𝑛) defined in the region [𝑎, 𝑏] × [0, 𝑇] were 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏, 

ℎ = 𝑥𝑗+1 − 𝑥𝑗 =
𝑏 − 𝑎

𝑁
,  𝑗 = 0,1, … , 𝑁. 

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < ⋯ < 𝑇, 

𝑡𝑛 = 𝑛𝛥𝑡,  𝑛 = 0,1, … .  

(3) 

The quintic B-spline basis functions at knots are given by: 

𝑄𝑚(𝑥) =
1

ℎ5

{
 
 
 
 
 

 
 
 
 
 
(𝑥 − 𝑥𝑚−3)

5, [𝑥𝑚−3, 𝑥𝑚−2],

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5, [𝑥𝑚−2, 𝑥𝑚−1],

(𝑥 − 𝑥𝑚−3)
5 − 6(𝑥 − 𝑥𝑚−2)

5 + 15(𝑥 − 𝑥𝑚−1)
5, [𝑥𝑚−1, 𝑥𝑚],

(𝑥𝑚+3 − 𝑥)
5 − 6(𝑥𝑚+2 − 𝑥)

5 + 15(𝑥𝑚+1 − 𝑥)
5 , [𝑥𝑚, 𝑥𝑚+1],

(𝑥𝑚+3 − 𝑥)
5 − 6(𝑥𝑚+2 − 𝑥)

5 , [𝑥𝑚+1, 𝑥𝑚+2]

(𝑥𝑚+3 − 𝑥)
5, [𝑥𝑚+2, 𝑥𝑚+3]

0,  otherwise

 (4) 

Now, one can use the quintic B-spline basis functions given in (4) and compute the values of 

𝐵𝑗(𝑥) and its derivatives at the knots points (see Table 1). 

 

Table 1. The Values of Quintic B-Spline, its First derivative and second derivatives at the nodal points 

𝑥 𝑥𝑗−3 𝑥𝑗 − 2 𝑥𝑗−1 𝑥𝑗 𝑥𝑗+1 𝑥𝑗+2 𝑥𝑗+3 

𝐵𝑗  0 1 26 66 26 1 0 

 𝐵𝑗
′ 0 

−5

 ℎ
 

−50

 ℎ
 0 

50

 ℎ
 

5

 ℎ
 0 

 𝐵𝑗
′′ 0 

20

 ℎ2
 

40

 ℎ2
 

−120

 ℎ2
 

40

 ℎ2
 

20

 ℎ2
 0 

 𝐵𝑗
′′′ 0 

−60

 ℎ3
 

120

 ℎ3
 0 −

120

 ℎ3
 

60

 ℎ3
 0 
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2.2. Discretization 

In order to write the discretization of (1) with respect to time, we consider 

𝑈𝑛(𝑥) ≈ 𝑢(𝑥, 𝑡𝑛),   𝑛 = 0,1,⋯ .𝑚, 

such that 𝑚Δ𝑡 = 𝑇. Now, one can write 

𝑈𝑛+1(𝑥) − 2𝑈𝑛(𝑥) + 𝑈𝑛−1(𝑥)

Δ𝑡
+𝒩(𝑢𝑛−1)

𝜕4𝑈𝑛(𝑥)

𝜕𝑥4
= 𝑓(𝑥, 𝑡𝑛), 

That is simplified by 

𝑈𝑛+1(𝑥) − 2𝑈𝑛(𝑥) + 𝑈𝑛−1(𝑥) +𝒩(𝑢𝑛−1)Δ𝑡
𝜕4𝑈𝑛(𝑥)

𝜕𝑥4
= Δ𝑡𝑓(𝑥, 𝑡𝑛), (5) 

with initial conditions 

𝑈0(𝑥) = 𝑢0(𝑥), 

𝑈1(𝑥) − 𝑈0(𝑥) = Δ𝑡 𝑢1(𝑥), 

and boundary conditions 

𝑈𝑛(0) = ℎ0(𝑡𝑛), 

𝑈𝑛(1) = ℎ1(𝑡𝑛), 

𝜕2𝑈𝑛

𝜕𝑥2
(0) = 𝑒0(𝑡), 

𝜕2𝑈𝑛

𝜕𝑥2
(1) = 𝑒1(𝑡). 

The interval [0,1] is partitioned as follows: 

0 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 = 1. 

In order to use quantic B-spline in the ends of interval, we add 4 points 𝑥−2, 𝑥−1, 𝑥𝑁+1  and 

𝑥𝑁+2 such that 

𝑥−2 < 𝑥−1 < 𝑥0, 

and 

𝑥𝑁 < 𝑥𝑁+1 < 𝑥𝑁+2. 

These points are equi-distances such that 

𝑥𝑖+1 − 𝑥𝑖 = Δ𝑥 = ℎ,   𝑖 = −2,−1,⋯ ,𝑁 + 1,𝑁 + 2. 

Now, one can define the following quantic B-splines on these nodal points: 

𝑄−2, 𝑄−1, 𝑄0, ⋯ , 𝑄𝑁 , 𝑄𝑁+1, 𝑄𝑁+2. 

One note that  

𝑄−2(𝑥) =
1

(Δ𝑥)5
(𝑥1 − 𝑥)

5,    𝑥 ∈ [𝑥0, 𝑥1], 

and 



 H. Hamzah Mahdi Abedi et al./ Computational Sciences and Engineering 3(1) (2023) 91-98   95 

 

𝑄𝑁+2(𝑥) =
1

(Δ𝑥)5
(𝑥 − 𝑥𝑁−1)

5,    𝑥 ∈ [𝑥𝑁−1, 𝑥𝑁]. 

Now, we are looking for the solution of (5) with given boundary and initial conditions as follows 

𝑈𝑛(𝑥) = ∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥),

𝑁+2

𝑖=−2

 (6) 

where the coefficients 𝐶𝑖
𝑛 should be determined. In other words, we are looking for the solution of 

𝑈𝑛(𝑥) with 𝑁 + 5 quintic B-splines 𝑄−2(𝑥), 𝑄−1(𝑥),⋯ , 𝑄𝑁+2(𝑥). Substituting (6) into (5) 

implies 

∑ 𝐶𝑖
𝑛+1𝑄𝑖(𝑥)

𝑁+2

𝑖=−2

− 2 ∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥)

𝑁+2

𝑖=−2

+ ∑ 𝐶𝑖
𝑛−1𝑄𝑖(𝑥)

𝑁+2

𝑖=−2

+𝒩(𝑢𝑛−1)Δ𝑡 ∑ 𝐶𝑖
𝑛
𝜕4𝑄𝑖(𝑥)

𝜕𝑥4

𝑁+2

𝑖=−2

= Δ𝑡𝑓(𝑥, 𝑡𝑛). 

Therefore, by taking collocation points, we have 𝑁 + 1 equations with 𝑁 + 5 unknown in each 

time step as follows: 

∑ 𝐶𝑖
𝑛+1𝑄𝑖(𝑥𝑗)

𝑁+2

𝑖=−2

− 2 ∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥𝑗)

𝑁+2

𝑖=−2

+ ∑ 𝐶𝑖
𝑛−1𝑄𝑖(𝑥𝑗)

𝑁+2

𝑖=−2

+𝒩(𝑢𝑛−1)Δ𝑡 ∑ 𝐶𝑖
𝑛
𝜕4𝑄𝑖(𝑥𝑗)

𝜕𝑥4

𝑁+2

𝑖=−2

= Δ𝑡𝑓(𝑥𝑗 , 𝑡
𝑛). (7) 

for 𝑗 = 0,1,⋯ , 𝑁. This leads to the following system of equations: 

𝐴𝐶𝑛+1 + (−2𝐴 +𝒩(𝑢𝑛−1)Δ𝑡𝐵)𝐶𝑛 + 𝐴𝐶𝑛−1 = 𝐹𝑛, (8) 

where 

𝐴 = [

𝑄−2(𝑥1)       𝑄−1(𝑥1)         ⋯    𝑄𝑁+2(𝑥1)   

𝑄−2(𝑥2)       𝑄−1(𝑥2)         ⋯    𝑄𝑁+2(𝑥2)   
⋮

𝑄−2(𝑥𝑁−1)   𝑄−1(𝑥𝑁−1)    ⋯    𝑄𝑁+2(𝑥𝑁−1)

],   

𝐵 =

[
 
 
 
 
 
 

𝜕4𝑄−2(𝑥1)

𝜕𝑥4
,
𝜕4𝑄−1(𝑥1)

𝜕𝑥4
 , ⋯ ,

𝜕4𝑄𝑁+2(𝑥1)

𝜕𝑥4

𝜕4𝑄−1(𝑥2)

𝜕𝑥4
,
𝜕4𝑄−1(𝑥2)

𝜕𝑥4
 , ⋯ ,

𝜕4𝑄𝑁+2(𝑥2)

𝜕𝑥4

⋮
𝜕4𝑄−2(𝑥𝑁−1)

𝜕𝑥4
,
𝜕4𝑄−1(𝑥𝑁−1)

𝜕𝑥4
 , ⋯ ,

𝜕4𝑄𝑁+2(𝑥𝑁−1)

𝜕𝑥4 ]
 
 
 
 
 
 

, 

and 

𝐹𝑛 = Δ𝑡 [

𝑓(𝑥1, 𝑡
𝑛)

𝑓(𝑥2, 𝑡
𝑛)

⋮
𝑓(𝑥𝑁−1, 𝑡

𝑛)

] , 𝐶𝑛 = [

𝑐−2
𝑛

𝑐−1
𝑛

⋮
𝑐𝑁+2
𝑛

]. 

Firstly, we have 𝑁 − 1 equations with 3(𝑁 + 5) unknowns 𝐶𝑛+1, 𝐶𝑛 and 𝐶𝑛−1.  From the first 

initial condition of (2) at point 𝑥𝑗, we have 

∑ 𝐶𝑖
0𝑄𝑖(𝑥𝑗)

𝑁+2

𝑖=−2

= 𝑢0(𝑥𝑗),   𝑗 = −2,−1,⋯ ,𝑁 + 2. (9) 

This generates the system  

𝐴′𝐶0 = 𝑣0, 

where 𝑣0 = [𝑢0(𝑥−2), 𝑢0(𝑥−1),⋯ , 𝑢0(𝑥𝑁+2)]
𝑇 and  
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𝐴′ = [

𝑄−2(𝑥−2)       𝑄−1(𝑥−2)         ⋯    𝑄𝑁+2(𝑥−2)   

𝑄−2(𝑥−1)       𝑄−1(𝑥−1)         ⋯    𝑄𝑁+2(𝑥−1)   
⋮                       ⋮

𝑄−2(𝑥𝑁+2)      𝑄−1(𝑥𝑁+2)       ⋯    𝑄𝑁+2(𝑥𝑁+2)    

]. 

If 𝐴′ is a nonsingular matrix, then 

𝐶0 = 𝐴′−1𝑣0, 

will be its solution. Also, by the second initial condition of (2), one can write: 

Also, by another initial conditions, we have 

∑ 𝐶𝑖
1𝑄𝑖(𝑥𝑗)

𝑁+2

𝑖=−2

− ∑ 𝐶𝑖
0𝑄𝑖(𝑥𝑗)

𝑁+2

𝑖=−2

= Δ𝑡 𝑢1(𝑥𝑗), 𝑗 = −2,0,⋯ ,𝑁 + 2. (10) 

This produces the system 

𝐴′𝐶1 − 𝐴′𝐶0 = Δ𝑡𝑣1,  

where 𝑣1 = [𝑢1(𝑥−2), 𝑢1(𝑥−1),⋯ , 𝑢1(𝑥𝑁+2)]
𝑇 . Then, under the non-singularity of 𝐴′, we have 

𝐶1 = 𝐴′−1(𝐴′𝐶0 + Δ𝑡 𝑣1) = 𝐶
0 + Δ𝑡 𝐴′−1𝑣1. 

Solving (9) gives the coefficients 𝑐𝑖
1 for 𝑖 = −2, −1,⋯ ,𝑁 + 2.  

Then, by (7), it remains to solve the following system  

𝐴𝐶𝑛+1 = (2𝐴 −𝒩(𝑢𝑛−1)Δ𝑡𝐵)𝐶𝑛 − 𝐴𝐶𝑛−1 + 𝐹𝑛 . 

This system consists of 𝑁 − 1 equations with 𝑁 + 5 unknowns. Six more equations can be 

reached by the following boundary conditions: 

∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥0)

𝑁+2

𝑖=−2

= ℎ0(𝑡𝑛), (11) 

 

∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥𝑁)

𝑁+2

𝑖=−2

= ℎ1(𝑡𝑛), (12) 

 

∑ 𝐶𝑖
𝑛
𝜕2𝑄𝑖(𝑥0)

𝜕𝑥2

𝑁+2

𝑖=−2

= 𝑒0(𝑡𝑛), (13) 

 

∑ 𝐶𝑖
𝑛
𝜕2𝑄𝑖(𝑥𝑁)

𝜕𝑥2

𝑁+2

𝑖=−2

= 𝑒1(𝑡𝑛). (14) 

Four equations can be directly reached by the above equations. Two more equations are added by 

the boundary conditions at points 𝑥−1 and 𝑥𝑁+1 as follows: 

∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥−1)

𝑁+2

𝑖=−2

= ℎ0(𝑡𝑛), (15) 

and 
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∑ 𝐶𝑖
𝑛𝑄𝑖(𝑥𝑁+1)

𝑁+2

𝑖=−2

= ℎ1(𝑡𝑛). (16) 

So, first the system (8) is solved for 𝑛 = 1 and in fact, 𝐶2 is derived and in the next step the other 

coefficients are computed. 

3. Numerical examples 

In this section, we present a numerical example and present comparisons of the absolute error 

between the proposed method with some other approaches. 

Example. Consider the following equations 

𝜕2𝑢

𝜕𝑡2
+ 𝑢

𝜕4𝑢

𝜕𝑥4
= 𝜋4𝑠𝑖𝑛(𝜋𝑥)2𝑐𝑜𝑠(𝑡)2  −  𝑠𝑖𝑛(𝜋𝑥)𝑐𝑜𝑠(𝑡),   0 < 𝑥 < 1, 0 < 𝑡, 

with the initial conditions 

𝑢(𝑥, 0) = sin 𝜋𝑥, 

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0, 

and the following boundary conditions: 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) =
𝜕2𝑢

𝜕𝑥2
(0, 𝑡) =

𝜕2𝑢

𝜕𝑥2
(1, 𝑡) = 0. 

The exact solution of this problem is 

𝑢(𝑥, 𝑡) = sin 𝜋𝑥 cos 𝑡. 

The absolute error of the solution at point (𝑥∗, 𝑡∗) is defined by 

𝑒𝑟𝑟(𝑥∗, 𝑡∗) = |𝑢(𝑥∗, 𝑡∗) − 𝑈(𝑥∗, 𝑡∗)|. 

Table 2 shows the approximated value for the example at points 𝑥 = 0.1, 0.2,⋯ ,0.5 at times 10 

and 16 seconds. In this table,  

𝑟 =
Δ𝑡

(Δ𝑥)2
, 

is considered by 2 and 0.5 while Δ𝑥 = 0.05 is fixed. We observe the proposed method is in good 

agreement with the exact solution and a few errors are observed. Also, in Table 3, the absolute 

errors are computed with time steps of 32, 48 and 64 at middle point 𝑥 = 0.5. Here, Δ𝑥 = 0.05 

and 𝑟 = 0.5 is considered. It is seen that the error is significantly low. 

Table 2. The approximated solution of example in different points by quantic bspline method 

 𝑟 Time Step 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 

Proposed 

Method 

2.0 

0.5 

10 

16 

-0.2582 

-0.2901 

-0.4867 

-0.5126 

-0.6552 

-0.7615 

-0.7956 

-0.9091 

-0.8010 

-0.9351 

Exact ------ 
10 

16 

-0.2593 

-0.2959 

-0.4932 

-0.5629 

-0.6788 

-0.7748 

-0.7980 

-0.9108 

-0.8391 

-0.9577 
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Table 3. The absolute error at midpoint 𝑥 = 0.5 with Δ𝑥 = 0.05, and   𝑟 = 0.5 for the solution of given example in 

different time steps  

 32 Time steps 48 Time steps 64 Time steps 

Proposed method 1.24 × 10−3 5.67 × 10−3 9.47 × 10−3 
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