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 Software plays a critical role in controlling the behavior of mechanical 

and electrical systems, as well as facilitating interactions among their 

components in cyber-physical systems (CPS). The risks associated with 

CPS systems can lead to the loss of functionality, performance, and even 

jeopardize human lives. Therefore, ensuring the reliability of software 

through comprehensive testing is of paramount importance in detecting 

and preventing potential errors. To achieve this objective, various 

methods and tools are employed to assess both the static and dynamic 

behavior of object-oriented software systems. One commonly used tool 

in the Unified Modeling Language (UML) is the state chart diagram, 

which visually represents the dynamic behavior of an object-oriented 

system. These diagrams depict the transitions and actions that occur as 

an object changes its state, driven by various inputs. To validate the 

accuracy of UML state chart diagrams, this paper proposes a method 

utilizing Finite State Machines (FSM) and Transition Tables. By 

creating a Transition Table, the UML state chart diagram can be 

effectively validated. To evaluate the proposed method, a set of Test 

Cases has been generated and applied to a real case study, ensuring the 

accuracy and reliability of the UML state chart diagram. 
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1. Introduction 

One of the most important qualitative attributes of software systems is the reliability [1,2]. The 

Institute of Electrical and Electronics Engineers (IEEE) defines software reliability as the 

probability of a software system or component to perform its intended function under specified 

operating conditions over a specific period of time. It is an important factor in software quality as it 

measures the failures that can lead to system crashes or risks. Software failure is described as an 

external deviation of program operation from requirements, while a fault is a defect in the program 

during execution that can lead to failure under certain conditions. A fault can be a defective, 
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nonexistent, or additional instruction, or a set of related instructions resulting from actual or 

potential failures. Software reliability is influenced by the coding, design, and requirements 

processes, and improving these steps through inspection or review can enhance software reliability. 

Evaluation of software reliability can only be done after testing or the completion of the product [1]. 

Different existing software reliability models can be used to estimate or predict software reliability. 

These models utilize fault data collected during testing, and reliability can be estimated or predicted 

by fitting the data to the model. Predicting reliability in the early stages of development can help 

project management reduce costs by minimizing repetition. Inadequate system reliability leads to 

undesirable and even unreliable services. Therefore, it is essential to provide suitable models for the 

characterization, estimation and prediction of software reliability [3]. Software validation is an 

important activity in order test whether the correct software has been developed. One main purpose 

validation to evaluate the quality of software. An important quality attribute is reliability. Today, 

behavioral modeling is a fundamental problem in software systems. Research has shown that most 

software systems either have problems or have been completely failed, and its main reasons are 

insufficient understanding of the processes and system specifications. Therefore, proper and 

accurate modeling of processes is a necessary issue in designing software systems. However, the 

problem that makes modeling (in particular, behavioral modeling) into an important issue in 

software engineering has the direct effect of modeling techniques for system evaluation. The more 

motivated the modeling technique will be, the easier it will be to evaluate [4]. 

A cyber-physical system (CPS) is a typical product of Industry 4.0, which plays a crucial role in 

integrating the physical and virtual worlds through real-time data processing services. CPSs enable 

the monitoring of physical systems using virtual systems, allowing for the analysis of data collected 

from the physical world in the virtual world. This analysis facilitates informed decision-making that 

can impact the physical world. Consequently, CPSs enable information integration, sharing, 

collaboration, real-time monitoring, and global optimization of systems. Various industries, 

including smart grids, healthcare, aircraft, digital manufacturing, and robotics, have leveraged CPSs 

for a wide range of applications. CPSs encompass networked control systems (NCSs), wireless 

sensor networks, smart grids, and more [5,6]. 

As CPS systems become increasingly complex, detecting faults and flaws has become more 

challenging. Software forms a crucial component of CPS, and the complexity of these software 

systems, often consisting of millions of lines of code, can pose risks to their functionality. Therefore, 

ensuring the stability and reliability of software in CPS requires thorough analysis and fault 

verification [7]. 

During software development, requirements analysis plays a vital role in determining the overall 

safety of the software. By identifying problems and errors that may lead to software failure and 

mitigating their risks during the requirements phase, the level of risk and system failure can be 

significantly reduced throughout the subsequent development stages. Unified Modeling Language 

(UML) is a widely-used modeling language that plays a crucial role in various phases of software 

development, including the requirements phase. It provides a standardized approach for specifying, 

documenting, and visualizing the artifacts of software-intensive systems being developed [4]. 

One of the versatile tools provided by UML is the state chart diagram, which describes the dynamic 

behavior of software systems. State chart diagrams illustrate the paths through which an object 

transitions between different states throughout its lifecycle. These paths are graphically represented 
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using the concept of Finite State Machines (FSM). FSM serves as a computational model for both 

the dynamic and static behavior of software systems. It operates by producing a finite number of 

states, one at a time, based on input symbols. The FSM starts from an initial state and ends at a final 

state, accepting input strings that lead it to the final state and rejecting strings that do not. FSMs are 

similar to Markov chains and can be converted into finite-state, discrete-parameter Markov chains. 

They are often used as a graphical tool for designing Markovian usage models and presenting them 

visually [8-10]. 

In this paper, the second section presents a proposed method along with a real case study (software 

of the Data and Command Unit). In subsection 2.1, the DCU Software Test Model is presented, 

followed by the transformation of this test model into a State Transition Diagram in subsection 2.2. 

Subsequently, in subsections 2.3 and 3, we will derive the transformation into FSM (Finite State 

Machine) and FSM Markovian Chains Model, respectively. Finally, in section 4, using the Markov 

Chain model, we calculate the system reliability. 

2. Software Test Model  

This section explains the proposed model for software testing, which has been presented for the 

command system. We first introduce this system and its general architecture. The primary objective 

of the Data and Command Unit is to ensure the prompt issuance of commands for the separation of 

the nose, engine, and parachutes based on simulated time and altitude. In order to initiate its 

functionality, this section is responsible for detecting the start of movement and receiving the Start 

signal. The Start signal is generated through the simultaneous cutting of the cord and the activation 

of the mass and spring switch. This signal serves as a command to initiate the operations of the two 

system processors, which utilize data from pressure sensors and the timeline of their internal timers 

to carry out their respective tasks. Figure 1 illustrates a visual representation of the general 

architecture of the Data and Command Unit. 
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Figure 1. General architecture of Data and Command Unit 
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2.1. DUC Software Test Model 

After detecting the engine shutdown, the software waits for 65 seconds, and then the nose separation 

flag is sent. Also, 80 seconds after the engine shutdown is detected, the engine separation flag is 

sent, and 210 seconds later, it begins to check the analog and digital pressure data. An average is 

taken each time the pressure data is checked, which is used for comparison in the algorithm. 

If the mean value of voltage taken for analog pressure is >0.467 V, the 17-km altitude detection flag 

(analog) is sent. If the mean pressure taken for digital pressure is >8448 m, the 17-km detection flag 

(digital) is sent. When an altitude of 17-km is detected by both sensors, it will be stored. If the mean 

voltage taken for analog pressure is >1.5 V, the 10-km altitude detection flag is sent (analog). If the 

mean pressure taken for digital pressure is >15,104 mb, the 10-km altitude detection flag will be 

sent. If the analog pressure difference at 17-km altitude is higher than the analog pressure at 10-km 

altitude by 0.6, then the sensor is reliable, and the 7-km altitude can be detected by this sensor to 

issue the parachute brake command. 36 seconds after detecting the 17-km altitude, the parachute 

brake command is again issued. 375 seconds after take-off, the parachute brake command is again 

issued. 10 seconds after sending each of parachute brake commands, the command to turn on GPS 

is sent. Now in accordance with the above descriptions, we present the following state transition 

diagram of the DCU in Next section. 

2.2. State Transition Diagram of DCU Software Test Model  

The state transition diagram for the DCU with 19 states and 2 final states is shown in Figure 2 Important 

DCU settings and operations are displayed with eighteen states. Based on the system setting, the final 

validation status of the Software will be evaluated as safe or unsafe modes. Transitions represent 

choices which determine the final validation status of the software. 

 

Figure 2. State Transition Diagram for the Data and Command Unit 
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2.3. State Transition Diagram to FSM Model 

DCU state transition diagram shown in Figure 2 can be converted to Finite State Machine (FSM) 

mode [14,15]. The diagram in Figure 3 depicts Finite State Machines, which are models comprised 

of a set of states and transitions between them. These transitions can be triggered either by external 

inputs or internal changes within the system. The execution of the machine begins from a start state 

and continues until it reaches an accept state. In this section, a Finite State Machine is developed 

based on the state transition diagram. 
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Figure 3. Finite State Machine of Data & Command Unit 

 

 

The transition table for the above finite state machine is created which shown in Table 1. From the 

above FSM, the transformation of states from one state to another state on the basis of {q0, q1, q2, q3, 

q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, q16, q17, q18} events. These events are considered as 

terminals for the above finite state machine of Data and Command Unit. The various productions can 

be induced for the above finite state machine and the corresponding transition table is as shown below 

in Table 1. Finite state machines (FSMs) are similar to Markov chains in the respect that both have 

states and transitions between states. FSMs can be seen as graphical presentations of a Markov chain; 

Probabilities are assigned to state transitions. Thus an FSM can efficiently be converted to a finite-state, 

discrete-parameter Markov chain. Furthermore, they allow the use of the same reliability modelling 

principles that were suggested with Markov chains. Usually, FSMs are applied as a tool for designing 

Markovian usage models and to present them graphically. 
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Table 1. The Transition for Finite State Machine 

State State Description 

q0 Read Pressure from Engine Pressure Sensor 

q1 Sensor 

q2 Engine Shutdown Detection 

q3 Engine Separation 

q4 Nose Separation 

q5 Read Analog Pressure Data 

q6 Read Digital Pressure Data 

q7 Calculate Average-D 

q8 Calculate Average –A 

q9 Height Detection10-D 

q10 Height Detection17-D 

Q11 Height Detection17-A 

q12 Height Detection10-A 

q13 Pressure15-Pressure 10 D 

q14 Pressure15-Pressure 10 A 

q15 Height7-Reliable Sensor D 

q16 Height7-Reliable Sensor A 

q17 Reserve Parachute Separation 

q18 Main Parachute Separation  

 

3. FSM Markovian Chains Model 

The Markov model offers superior capabilities compared to other combinational methods and is 

particularly effective in solving systems with dynamic and interdependent behavior. However, it 

also possesses notable drawbacks, which become exponentially more pronounced as the system size 

increases [11-13]. The exponential growth in the number of states can lead to impractical and 

arbitrary models. Consequently, researchers have focused on approximate combinatorial methods 

that generate only a subset of the Markov chain mode space. Furthermore, the Markov model 

assumes an exponential distribution for the time-to-failure parameter [14], whereas combined 

methods can accommodate arbitrary failure distributions. The fundamental concepts in Markov 

chain modeling are system states and state transitions. A system state represents a specific 

combination of system parameters that describes the system at any given moment. In the context of 

system reliability, each state in the Markov model typically represents a unique combination of 

functioning components. State transitions, on the other hand, track the changes in the system state 

over time, particularly in the event of failures. The system transitions from one state to another 

(often to a failure state) based on parameters such as failure rates, error coverage factors, and repair 

rates [15]. Solving a Markovian model involves solving a set of differential equations, which can 

be expressed in the following form: 

𝐴 ∙ 𝑃(𝑡) = 𝑃′(t)
yields
→    

[
 
 
 
 
−𝑎11 𝑎12 𝑎13
𝑎21 −𝑎22 𝑎23
𝑎31 𝑎32 −𝑎33
∙∙∙ ∙∙∙ ∙∙∙
𝑎𝑗1 𝑎𝑗2 𝑎𝑗3

     

∙∙∙ 𝑎1𝑗
∙∙∙ 𝑎2𝑗
∙∙∙
∙∙∙
∙∙∙

𝑎3𝑗
∙∙∙
−𝑎𝑗𝑗]

 
 
 
 

∙

[
 
 
 
 
𝑃1(𝑡)

𝑃2(𝑡)

𝑃3(𝑡)
∙∙∙
𝑃𝑛(𝑡)]

 
 
 
 

=   

[
 
 
 
 
𝑃′1(𝑡)

𝑃′2(𝑡)

𝑃′3(𝑡)
∙∙∙

𝑃′𝑛(𝑡)]
 
 
 
 

 (1) 

 

In the given equation (Eq. (1)), the transfer rate from state j to state k is denoted by ajk (j ≠ k). The 

diagonal elements ajj in matrix A represent the sum of state transition rates from state j. That is, ajj =
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∑ ajk
n
k=1,k≠j . Consequently, the sum of each column in matrix A is equal to zero, indicating that the 

total transition rates out of each state balance with the incoming transition rates. 

In the equation, Pi(t) represents the probability of the system being in state i at time t. The parameter n 

denotes the number of states in the Markov model. To solve the differential equation, the Laplace 

transform function can be utilized, which provides the solution including the probabilities of the system 

being in any state. 

The unreliability or unsafe mode of the system can be determined by summing the probabilities of 

failure for each state, i.e., ∑ PFi(t)∀F , where PFi(t) represents the probability of the system being in the 

unsafe or failure mode (Fi) at time t. 

The reliability assessment method involves constructing the Markov model of the system under 

investigation. If the model comprises n distinct states, the probability vector of state occurrence can be 

defined using Eq. (2). 

[𝑃(𝑡)]𝑇 = [𝑃1(𝑡)𝑃2(𝑡)…𝑃𝑛(𝑡)] (2) 

 

In the context of the Markov model, the reliability of a system can be determined by evaluating the 

probabilities of all possible states in which the system is operational. This can be calculated using Eq. 

(3). 

𝑅𝑠(𝑡) = ∑ 𝑃𝑗
𝑗∈𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑆𝑡𝑎𝑡𝑒𝑠

(𝑡) (3) 

 

By analyzing the Markov model and computing the probabilities of each state, we can assess the 

reliability of the system. This assessment provides valuable insights into the system's performance and 

helps in identifying potential areas of improvement to enhance its reliability. 

 

 
Figure 4. Unsafety each state 
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Figure 5. Final reliability each state 

4. Conclusion 

Software plays a critical role in industries where system failures can have severe consequences. A 

single software failure has the potential to cause irreparable damage. It is imperative to recognize 

that research conducted in the United States has shown that more than seventy percent of adverse 

events attributed to software could have been prevented through proactive measures such as 

forecasting, error detection, and elimination methods. Therefore, it is crucial to prioritize software 

reliability prediction methods before implementing software-based systems. 

Building upon the significance of examining the reliability of critical systems, this paper proposes 

a novel approach Given the importance of examining the reliability of critical systems, this paper 

presents a new method for evaluating and investigating the reliability and unsafety of systems. This 

method utilizes test model analysis and test cases to prepare the State Transition Diagram model, 

followed by the transformation of the FSM model to assess reliability. By transforming the obtained 

FSM model into a Markov Chain model, we were able to evaluate and investigate the reliability of 

each system state. For future research, we recommend conducting software reliability analysis using 

other statistical models, such as regression models. 
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