

Computational Sciences and Engineering 3(1) (2023) 153-161

Computational Sciences and Engineering

University of Guilan journal homepage: https://cse.guilan.ac.ir/

Software Validation Using Markov Chain Method and State Transition Diagram

Shahrzad Oveisi
a,⁎

, Mohammad Nadjafi
b
, Mohammad Ali Farsi

b
, Ali Moeini

a

a Department of Algorithms and Computation, College of Engineering Sciences, University of Tehran, Tehran, Iran
b Aerospace Research Institute (Ministry of Science, Research and Technology); Department of Aerospace Management, Law and

Standards;Tehran, P.O.B 14665-834, Iran

A R T I C L E I N F O A B S T R A C T

Article history:

Received 15 November 2023

Received in revised form 20 December 2023
Accepted 23 December 2023

Available online 23 December 2023

 Software plays a critical role in controlling the behavior of mechanical

and electrical systems, as well as facilitating interactions among their

components in cyber-physical systems (CPS). The risks associated with

CPS systems can lead to the loss of functionality, performance, and even

jeopardize human lives. Therefore, ensuring the reliability of software

through comprehensive testing is of paramount importance in detecting

and preventing potential errors. To achieve this objective, various

methods and tools are employed to assess both the static and dynamic

behavior of object-oriented software systems. One commonly used tool

in the Unified Modeling Language (UML) is the state chart diagram,

which visually represents the dynamic behavior of an object-oriented

system. These diagrams depict the transitions and actions that occur as

an object changes its state, driven by various inputs. To validate the

accuracy of UML state chart diagrams, this paper proposes a method

utilizing Finite State Machines (FSM) and Transition Tables. By

creating a Transition Table, the UML state chart diagram can be

effectively validated. To evaluate the proposed method, a set of Test

Cases has been generated and applied to a real case study, ensuring the

accuracy and reliability of the UML state chart diagram.

Keywords:
Software reliability

Finite state machine

Markov chain simulation

Transition diagram

1. Introduction

One of the most important qualitative attributes of software systems is the reliability [1,2]. The

Institute of Electrical and Electronics Engineers (IEEE) defines software reliability as the

probability of a software system or component to perform its intended function under specified

operating conditions over a specific period of time. It is an important factor in software quality as it

measures the failures that can lead to system crashes or risks. Software failure is described as an

external deviation of program operation from requirements, while a fault is a defect in the program

during execution that can lead to failure under certain conditions. A fault can be a defective,

⁎ Corresponding author.

 E-mail addresses: shahrzad.oveisi@gmail.com (Sh. Oveisi)

https://doi.org/10.22124/cse.2023.26035.1067

© 2023 Published by University of Guilan

https://cse.guilan.ac.ir/
mailto:shahrzad.oveisi@gmail.com
https://doi.org/10.22124/cse.2023.26035.1067

154 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161

nonexistent, or additional instruction, or a set of related instructions resulting from actual or

potential failures. Software reliability is influenced by the coding, design, and requirements

processes, and improving these steps through inspection or review can enhance software reliability.

Evaluation of software reliability can only be done after testing or the completion of the product [1].

Different existing software reliability models can be used to estimate or predict software reliability.

These models utilize fault data collected during testing, and reliability can be estimated or predicted

by fitting the data to the model. Predicting reliability in the early stages of development can help

project management reduce costs by minimizing repetition. Inadequate system reliability leads to

undesirable and even unreliable services. Therefore, it is essential to provide suitable models for the

characterization, estimation and prediction of software reliability [3]. Software validation is an

important activity in order test whether the correct software has been developed. One main purpose

validation to evaluate the quality of software. An important quality attribute is reliability. Today,

behavioral modeling is a fundamental problem in software systems. Research has shown that most

software systems either have problems or have been completely failed, and its main reasons are

insufficient understanding of the processes and system specifications. Therefore, proper and

accurate modeling of processes is a necessary issue in designing software systems. However, the

problem that makes modeling (in particular, behavioral modeling) into an important issue in

software engineering has the direct effect of modeling techniques for system evaluation. The more

motivated the modeling technique will be, the easier it will be to evaluate [4].

A cyber-physical system (CPS) is a typical product of Industry 4.0, which plays a crucial role in

integrating the physical and virtual worlds through real-time data processing services. CPSs enable

the monitoring of physical systems using virtual systems, allowing for the analysis of data collected

from the physical world in the virtual world. This analysis facilitates informed decision-making that

can impact the physical world. Consequently, CPSs enable information integration, sharing,

collaboration, real-time monitoring, and global optimization of systems. Various industries,

including smart grids, healthcare, aircraft, digital manufacturing, and robotics, have leveraged CPSs

for a wide range of applications. CPSs encompass networked control systems (NCSs), wireless

sensor networks, smart grids, and more [5,6].

As CPS systems become increasingly complex, detecting faults and flaws has become more

challenging. Software forms a crucial component of CPS, and the complexity of these software

systems, often consisting of millions of lines of code, can pose risks to their functionality. Therefore,

ensuring the stability and reliability of software in CPS requires thorough analysis and fault

verification [7].

During software development, requirements analysis plays a vital role in determining the overall

safety of the software. By identifying problems and errors that may lead to software failure and

mitigating their risks during the requirements phase, the level of risk and system failure can be

significantly reduced throughout the subsequent development stages. Unified Modeling Language

(UML) is a widely-used modeling language that plays a crucial role in various phases of software

development, including the requirements phase. It provides a standardized approach for specifying,

documenting, and visualizing the artifacts of software-intensive systems being developed [4].

One of the versatile tools provided by UML is the state chart diagram, which describes the dynamic

behavior of software systems. State chart diagrams illustrate the paths through which an object

transitions between different states throughout its lifecycle. These paths are graphically represented

 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161 155

using the concept of Finite State Machines (FSM). FSM serves as a computational model for both

the dynamic and static behavior of software systems. It operates by producing a finite number of

states, one at a time, based on input symbols. The FSM starts from an initial state and ends at a final

state, accepting input strings that lead it to the final state and rejecting strings that do not. FSMs are

similar to Markov chains and can be converted into finite-state, discrete-parameter Markov chains.

They are often used as a graphical tool for designing Markovian usage models and presenting them

visually [8-10].

In this paper, the second section presents a proposed method along with a real case study (software

of the Data and Command Unit). In subsection 2.1, the DCU Software Test Model is presented,

followed by the transformation of this test model into a State Transition Diagram in subsection 2.2.

Subsequently, in subsections 2.3 and 3, we will derive the transformation into FSM (Finite State

Machine) and FSM Markovian Chains Model, respectively. Finally, in section 4, using the Markov

Chain model, we calculate the system reliability.

2. Software Test Model

This section explains the proposed model for software testing, which has been presented for the

command system. We first introduce this system and its general architecture. The primary objective

of the Data and Command Unit is to ensure the prompt issuance of commands for the separation of

the nose, engine, and parachutes based on simulated time and altitude. In order to initiate its

functionality, this section is responsible for detecting the start of movement and receiving the Start

signal. The Start signal is generated through the simultaneous cutting of the cord and the activation

of the mass and spring switch. This signal serves as a command to initiate the operations of the two

system processors, which utilize data from pressure sensors and the timeline of their internal timers

to carry out their respective tasks. Figure 1 illustrates a visual representation of the general

architecture of the Data and Command Unit.

Main Parachute

Reserve

Parachute

GPS

Motor

Noise

The Cuff of the

Spacecraft

Mass & Spring

Facilities
Battery

Motor Pressure

Sensors

Flight

Computer

External

Memory

Internal

Memory

Analog Pressure

Sensor

Digital Pressure

Sensor

Digital Pressure

Sensor
FPGA MICRO

Figure 1. General architecture of Data and Command Unit

156 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161

2.1. DUC Software Test Model

After detecting the engine shutdown, the software waits for 65 seconds, and then the nose separation

flag is sent. Also, 80 seconds after the engine shutdown is detected, the engine separation flag is

sent, and 210 seconds later, it begins to check the analog and digital pressure data. An average is

taken each time the pressure data is checked, which is used for comparison in the algorithm.

If the mean value of voltage taken for analog pressure is >0.467 V, the 17-km altitude detection flag

(analog) is sent. If the mean pressure taken for digital pressure is >8448 m, the 17-km detection flag

(digital) is sent. When an altitude of 17-km is detected by both sensors, it will be stored. If the mean

voltage taken for analog pressure is >1.5 V, the 10-km altitude detection flag is sent (analog). If the

mean pressure taken for digital pressure is >15,104 mb, the 10-km altitude detection flag will be

sent. If the analog pressure difference at 17-km altitude is higher than the analog pressure at 10-km

altitude by 0.6, then the sensor is reliable, and the 7-km altitude can be detected by this sensor to

issue the parachute brake command. 36 seconds after detecting the 17-km altitude, the parachute

brake command is again issued. 375 seconds after take-off, the parachute brake command is again

issued. 10 seconds after sending each of parachute brake commands, the command to turn on GPS

is sent. Now in accordance with the above descriptions, we present the following state transition

diagram of the DCU in Next section.

2.2. State Transition Diagram of DCU Software Test Model

The state transition diagram for the DCU with 19 states and 2 final states is shown in Figure 2 Important

DCU settings and operations are displayed with eighteen states. Based on the system setting, the final

validation status of the Software will be evaluated as safe or unsafe modes. Transitions represent

choices which determine the final validation status of the software.

Figure 2. State Transition Diagram for the Data and Command Unit

read pressure from

engine pressure sensor

Engine shutdown

detection

read degital

pressure data

Engine

Sepration

 nose

sepration

read Analog

pressure data

Calculate the

Average-D

Height

detection 17-D

Height

detection 10-D
pressure15-

pressure10-D

>100

finish

unsafe

<100

Calculate the

Average-A

>100
Height

detection 10-A

Height

detection 17-A

pressure15-

pressure10-A

>0.467 v

<100

yes

NO

yes

NO

>1.5 v

send pressure

can't detect height

height7- reliable

sensor

>0.6

Reserve parachute

sepration

yes

Start of GPS

yes

yes

height7-Reliable

sensor

>

yes

YES

send pressure

can't detect height

send pressure

can't detect height

send pressure

can't detect height

yes

YES

YES

YES

NO

<4 pressure

>4 pressure

>8448 mili bar

> 15104 milibar

Main parachute

sepration

YES

NO

YES

 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161 157

2.3. State Transition Diagram to FSM Model

DCU state transition diagram shown in Figure 2 can be converted to Finite State Machine (FSM)

mode [14,15]. The diagram in Figure 3 depicts Finite State Machines, which are models comprised

of a set of states and transitions between them. These transitions can be triggered either by external

inputs or internal changes within the system. The execution of the machine begins from a start state

and continues until it reaches an accept state. In this section, a Finite State Machine is developed

based on the state transition diagram.

Unsafe

Mode
Start

Finish

q0

q1

q2

q3

q4

q6

q5 q7

q8

q9

q10

q11

q12 q13

q14 q15

q16 q17

q18

Figure 3. Finite State Machine of Data & Command Unit

The transition table for the above finite state machine is created which shown in Table 1. From the

above FSM, the transformation of states from one state to another state on the basis of {q0, q1, q2, q3,

q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, q16, q17, q18} events. These events are considered as

terminals for the above finite state machine of Data and Command Unit. The various productions can

be induced for the above finite state machine and the corresponding transition table is as shown below

in Table 1. Finite state machines (FSMs) are similar to Markov chains in the respect that both have

states and transitions between states. FSMs can be seen as graphical presentations of a Markov chain;

Probabilities are assigned to state transitions. Thus an FSM can efficiently be converted to a finite-state,

discrete-parameter Markov chain. Furthermore, they allow the use of the same reliability modelling

principles that were suggested with Markov chains. Usually, FSMs are applied as a tool for designing

Markovian usage models and to present them graphically.

158 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161

Table 1. The Transition for Finite State Machine

State State Description

q0 Read Pressure from Engine Pressure Sensor

q1 Sensor

q2 Engine Shutdown Detection

q3 Engine Separation

q4 Nose Separation

q5 Read Analog Pressure Data

q6 Read Digital Pressure Data

q7 Calculate Average-D

q8 Calculate Average –A

q9 Height Detection10-D

q10 Height Detection17-D

Q11 Height Detection17-A

q12 Height Detection10-A

q13 Pressure15-Pressure 10 D

q14 Pressure15-Pressure 10 A

q15 Height7-Reliable Sensor D

q16 Height7-Reliable Sensor A

q17 Reserve Parachute Separation

q18 Main Parachute Separation

3. FSM Markovian Chains Model

The Markov model offers superior capabilities compared to other combinational methods and is

particularly effective in solving systems with dynamic and interdependent behavior. However, it

also possesses notable drawbacks, which become exponentially more pronounced as the system size

increases [11-13]. The exponential growth in the number of states can lead to impractical and

arbitrary models. Consequently, researchers have focused on approximate combinatorial methods

that generate only a subset of the Markov chain mode space. Furthermore, the Markov model

assumes an exponential distribution for the time-to-failure parameter [14], whereas combined

methods can accommodate arbitrary failure distributions. The fundamental concepts in Markov

chain modeling are system states and state transitions. A system state represents a specific

combination of system parameters that describes the system at any given moment. In the context of

system reliability, each state in the Markov model typically represents a unique combination of

functioning components. State transitions, on the other hand, track the changes in the system state

over time, particularly in the event of failures. The system transitions from one state to another

(often to a failure state) based on parameters such as failure rates, error coverage factors, and repair

rates [15]. Solving a Markovian model involves solving a set of differential equations, which can

be expressed in the following form:

𝐴 ∙ 𝑃(𝑡) = 𝑃′(t)
yields
→

[

−𝑎11 𝑎12 𝑎13
𝑎21 −𝑎22 𝑎23
𝑎31 𝑎32 −𝑎33
∙∙∙ ∙∙∙ ∙∙∙
𝑎𝑗1 𝑎𝑗2 𝑎𝑗3

∙∙∙ 𝑎1𝑗
∙∙∙ 𝑎2𝑗
∙∙∙
∙∙∙
∙∙∙

𝑎3𝑗
∙∙∙
−𝑎𝑗𝑗]

∙

[

𝑃1(𝑡)

𝑃2(𝑡)

𝑃3(𝑡)
∙∙∙
𝑃𝑛(𝑡)]

=

[

𝑃′1(𝑡)

𝑃′2(𝑡)

𝑃′3(𝑡)
∙∙∙

𝑃′𝑛(𝑡)]

 (1)

In the given equation (Eq. (1)), the transfer rate from state j to state k is denoted by ajk (j ≠ k). The

diagonal elements ajj in matrix A represent the sum of state transition rates from state j. That is, ajj =

 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161 159

∑ ajk
n
k=1,k≠j . Consequently, the sum of each column in matrix A is equal to zero, indicating that the

total transition rates out of each state balance with the incoming transition rates.

In the equation, Pi(t) represents the probability of the system being in state i at time t. The parameter n

denotes the number of states in the Markov model. To solve the differential equation, the Laplace

transform function can be utilized, which provides the solution including the probabilities of the system

being in any state.

The unreliability or unsafe mode of the system can be determined by summing the probabilities of

failure for each state, i.e., ∑ PFi(t)∀F , where PFi(t) represents the probability of the system being in the

unsafe or failure mode (Fi) at time t.

The reliability assessment method involves constructing the Markov model of the system under

investigation. If the model comprises n distinct states, the probability vector of state occurrence can be

defined using Eq. (2).

[𝑃(𝑡)]𝑇 = [𝑃1(𝑡)𝑃2(𝑡)…𝑃𝑛(𝑡)] (2)

In the context of the Markov model, the reliability of a system can be determined by evaluating the

probabilities of all possible states in which the system is operational. This can be calculated using Eq.

(3).

𝑅𝑠(𝑡) = ∑ 𝑃𝑗
𝑗∈𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑆𝑡𝑎𝑡𝑒𝑠

(𝑡) (3)

By analyzing the Markov model and computing the probabilities of each state, we can assess the

reliability of the system. This assessment provides valuable insights into the system's performance and

helps in identifying potential areas of improvement to enhance its reliability.

Figure 4. Unsafety each state

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2

Unsafty

160 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161

Figure 5. Final reliability each state

4. Conclusion

Software plays a critical role in industries where system failures can have severe consequences. A

single software failure has the potential to cause irreparable damage. It is imperative to recognize

that research conducted in the United States has shown that more than seventy percent of adverse

events attributed to software could have been prevented through proactive measures such as

forecasting, error detection, and elimination methods. Therefore, it is crucial to prioritize software

reliability prediction methods before implementing software-based systems.

Building upon the significance of examining the reliability of critical systems, this paper proposes

a novel approach Given the importance of examining the reliability of critical systems, this paper

presents a new method for evaluating and investigating the reliability and unsafety of systems. This

method utilizes test model analysis and test cases to prepare the State Transition Diagram model,

followed by the transformation of the FSM model to assess reliability. By transforming the obtained

FSM model into a Markov Chain model, we were able to evaluate and investigate the reliability of

each system state. For future research, we recommend conducting software reliability analysis using

other statistical models, such as regression models.

References

[1] Oveisi, S., Moeini, A., Mirzaei, S., & Farsi, M. A. (2023). Software reliability prediction: A

survey. Quality and Reliability Engineering International, 39(1), 412-453.

[2] Oveisi, S., Nadjafi, M., Farsi, M. A., Moeini, A., & Shabankhah, M. (2020). Design software failure

mode and effect analysis using Fuzzy TOPSIS based on Fuzzy entropy. Journal of Advances in

Computer Engineering and Technology, 6(3), 187-200.

[3] Modarres, M., Kaminskiy, M. P., & Krivtsov, V. (2016). Reliability engineering and risk analysis: a

practical guide. CRC press.

[4] Kamandi, A., Azgomi, M. A., & A. Movaghar, A. (2006). Transformation of UML models into

analyzable OSAN models. Electronic Notes in Theoretical Computer Science, 159, 3-22.

[5] Duo, W., Zhou, M., & Abusorrah, A. (2022). A survey of cyber-attacks on cyber physical systems:

Recent advances and challenges. IEEE/CAA Journal of Automatica Sinica, 9(5), 784-800.

0

0.2

0.4

0.6

0.8

1

1.2

Final Reliability

 Sh. Oveis, et al. / Computational Sciences and Engineering 3(1) (2023) 153-161 161

[6] Kamandi, A., Abdollahi Azgomi, M., & Movaghar, A. (2004). A Modelling Tool for Object Stochastic

Activity Networks. In Proc. 9th Annual CSI Computer Conf. (CSICC'04), Tehran, Iran, 408-419.

[7] Rautakorpi, M., (1995). Application of Markov Chain Techniques in Certification of Software. Helsinki

University.

[8] Rausand, M., & Høyland, A. (2004). System reliability theory: models, statistical methods, and

applications. John Wiley & Sons, 396.

[9] Salman, Y. D. A. (2014). Test Case Generation Framework Based On Uml Statechart Diagram. Lecture

Notes in Electrical Engineering.

[10] Zakaria, N. N., Othman, M., Sokkalingam, R., Daud, H., Abdullah, L., & Abdul Kadir, E. (2019).

Markov Chain Model Development For Forecasting Air Pollution Index Of Miri,

Sarawak. Sustainability, 11(19).

[11] Barbosa, G., de Souza, É. F., dos Santos, L. B. R., da Silva, M., Balera, J. M., & Vijaykumar, N. L.

(2022). A Systematic Literature Review on prioritizing software test cases using Markov

chains. Information and Software Technology, 147.

[12] Rebelo, L., Souza, É., Berkenbrock, G., Barbosa, G., Silva, M., Endo, A., ... & Trubiani, C. (2023).

Prioritizing Test Cases with Markov Chains: A Preliminary Investigation. In IFIP International

Conference on Testing Software and Systems, 219-236. Cham: Springer Nature Switzerland.

[13] Kashyap, A., Holzer, T., Sarkani, S., & Eveleigh, T. (2012). Model based testing for software systems:

an application of markov modulated markov process. International Journal of Computer

Applications, 46(14), 13-20.

[14] Ding, Y., Li, W., Zhong, D., Huang, H., Zhao, Y., & Xu, Z. (2018). System states transition safety

analysis method based on FSM and NuSMV. In Proceedings of the 2018 2nd International Conference

on Management Engineering, Software Engineering and Service Sciences, 107-112.

[15] Saxena, V., & Kumar, S. (2012). Validation of UML Class Model through Finite-State

Machine. International Journal of Computer Applications, 41(19).

