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 Obtaining exact solutions of nonlinear differential equations is an 

applicable topic in physics and mathematics. The principal aim of the 

current research is to elicit exact solutions to the (2+1)-dimensional 

Sakovich equation employing two well-known methods including 

Kudryashov and Gˊ/G expansion methods. Furthermore, several exact 

solutions from soliton solutions to periodic solutions to the equation are 

formally derived. Hence, the results are plotted to demonstrate the 

dynamics of the obtained solutions, and they indicate the existence of 

different wave structures in the governing model. 
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1. Introduction 

For decades, a plethora of efforts has been made to exactly solve nonlinear partial differential 

equations (NLPDEs). Moreover, many methods with various strengths and weaknesses have been 

introduced to achieve the goal. Some of the most commonly used of them are first integral methods 

[1-4], ansatz method [5-9], Gˊ/G expansion method [10], modified exp-function method [10,11], 

Kudryashov method  [12-14], the functional variable method [15-17], and many others [18-25]. The 

present research focuses on two methods called Kudryashov and Gˊ/G expansion methods to 

achieve exact solutions of NLPDEs. In both methods, the solution is expressed as a polynomial such 

that the solution process can be easily handled by symbolic computations [26-29].  

The goal of the article is to achieve exact solutions of (2 + 1)-dimensional Sakovich equation. In the 

last two years, the following the (2 + 1)-dimensional second-order Sakovich equation has been 

introduced and studied by some researchers [30]. 

2 22 6 2( ) 0.xt yy xy xx xxq q qq q q q+ + + + =  (1) 
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The above-mentioned equation pertains to a category of second-order equations, quadratic in 

𝑞𝑥𝑥, that satisfy the Painlevé test for integrability and holds Korteweg-de-Vries (KdV)- sort multi-

soliton solutions [1]. What sets this equation apart from the KDV equation is that this equation is 

not a third-order 𝑞𝑥𝑥𝑥 scatter expression. Wazwaz and Sakovich have come up with good ideas for 

this newly developed equation and its remarkable properties [30,31]. In [32], the multi wave and 

interaction solutions of this equation are obtained by Lie symmetry analysis method. 

The issues raised in other sections of the work are as succeeding. In part 2, the preliminary ideas of 

the Kudryashov method and the expansion of G '/ G will be discussed. In part 3, Kudryashov's 

method will be applied to achieve the exact solutions of the Sakovich equation. In Section 4, the G'/ 

G expansion method is used to discover exact solutions to the equation. Finally, a conclusion will 

be presented in Section 5. 

2. Introducing the methods 

In the current section, the general structure of Kudryashov and Gˊ/G expansion methods to obtain 

the exact solutions of NLPDEs is briefly described. 

2.1. kudryashov method 

For describing the primary ideas of the Kudryashov method, the following NLPDE should be noted 

( , , , , , , , , ) 0.t x y xx tt yy xyp q q q q q q q q =  (2) 

 

Step 1: By changing the variable ,x y wt  = + −  

where  ,   and w  are nonzero constants, Eq. (2) stated as follows 

( , , ,...) 0Q q q q  =  (3) 

 

Step 2: It is assumed that the solution of Eq. (2) has a solution as follows 

0

( ) ( ).
N

i

i

i

q a R 
=

=  (4) 

 

In which Nnan ,...,2,1,0  , =  ( 0Na ) are unfamiliar parameters, and N  can be achieved by 

balancing between the highest order derivatives and highest order nonlinear terms in Eq. (3), and 

( )R   has the form  
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+
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which fulfil the following equation 

2 2 2( ( )) ( )(1 ( )).R R R    = −  (6) 
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we have 

3

2

( ) ( ) ( ),

( ) ( )(1 6 ( )),

R R R

R R R

   

   

 = −

 = −  (7) 

 

Step 3: Setting Eq. (4) into Eq. (3) results 

( ( )) 0,F R  =  (8) 

 

where ( ( ))F R   is a polynomial in ( )R  .  By considering the coefficient of each power of ( )R   in 

Eq. (8) equal to zero,  a algebraic will be dreived for finding , ,ia w  , and . 

Step 4: By substituting the parameters obtained from step 3 in relation 4, the solution of the Eq. (2) 

will be resulted. 

2.2. Gˊ/G expansion method 

To implement the Gˊ/G expansion method, the following stages must be considered. 

Step 1. By changing the variable 

,x y wt = + −  (9) 

 

where 𝜔 is constant, Eq. (2) will be stated as: 

( , , ,...) 0,Q q q q  =  (10) 

 

which the superscripts denote the derivatives with respect to . 

 

Step 2. Suppose that the solution of ODE (Eq. (10)) can be written in Gˊ/G as follows: 

1

( ) ,

im

i

i

G
q a

G


=

 
=  

 
  (11) 

 

that  fulfill the second order linear ordinary differential equation in the following form 

 (12) 

 

Where  and  are unknown parameters to be find with . From Eq. (11) and Eq. (12) 

we derive 


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(13) 

 

Step 3. For obtaining , the homogeneous balance must be considered between the highest order 

derivatives and highest order nonlinear term in Eq. (10). Replacing Eq. (11) into Eq. (10) with 

considering Eq. (12), results in an algebraic equation including 

i
G

G

 
 
 

. Getting the coefficient of 

power of 

i
G

G

 
 
 

 to zero cause a system for obtaining unknown parameters. 

 

Step 4. Placing over determine value in Step 3 in Eq. (11), and the general solutions of Eq. (12), the 

exact solutions of the Eq. (2) will be achieved. 

3. Application Kudryashov method to the Sakovich equation 

By applying the transformation , Eq. (1) convert to, 

2 2 2 4 2( )q 2 6 2 ( ) 0.w qq q q q       − + + + =  (14) 

 

By balancing principal, we derive . Therefore, the solution series is considered as follows. 

2

0 1 2( ) ( ) ( ).q a a R a R  = + +
 

(15) 

 

Where ( )R   satisfy in Eq. (6). Substituting Eq. (15) into Eq. (14), and considering the coefficient of 

( )R  equal to zero, results in  

 

 

 

 

(16) 
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Solving above system, leads to 

3 6 2
2

0 1 2

1 4 1 (16 5 )
, 0, 2 , .

6 6
a a a w

   
 

 

+ +
= − = = =  (17) 

 

So, the solutions of the sakovich equation can be acheined as follows 
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 (18) 

 

where , ,a    and   is a constant. The plots  of solution (Eq. (18)) for various parameters are drawn 

in Figures 1, 2. Considering 
1

2
a =  and 1 =  , the solution (Eq. (18)) will be as follows 

3 6 2
2 2

3 6 2
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1 4 1 (16 5 )
( ) 2 sec ( t)

6 6

1 8 1 (16 5 )
2 tan ( t).

6 6

q h y x

h y x

   
   

 

   
  

 

+ +
= − + − − +

− + +
= − − − − +

 (19) 
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Figure 1. The plot of solution Eq. (18) for 1, 1, 1, 1a  = = = =  and 0.1t =    
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Figure 2. The plot of Eq. (18) for 1, 1 = =  and 0.1y =  

 

  

4. Application Gˊ/G-expansion method to the Sakovich equation 

By considering, x y wt = + −  Eq. (1) convert to 

2 2(1 ) 2 6 2( ) 0.w q qq q q q   − + + + =  (20) 

 

By balancing principal, we derive 2m = . Therefore, the solution series is considered as follows. 
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2 1 0 2( ) , 0.
G G

q
G G
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Substituting Eq. (21) into Eq. (20), and placing the coefficient of  equal to zero, results in system 

of equations. 

 

 

 

 

 

 

 

(22) 

 

Solving above system, leads to 

G

G
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2 4 2 2

0 1 2

1 4 1 1 4 8 5
, 2 , 2, .

6 3 6 6 3 3 6
w         = − − − = − = − = − + +  (23) 

 

By replacing Eq. (20) into Eq. (19), we have 

2

21 4 1
( ) 2 2 ,

6 3 6

G G
q

G G
   

    
= − − − − −   

   
 (24) 

 

where 

4 2 21 4 8 5
( ) .
6 3 3 6

x y t    = + − − + +  (25) 

 

Putting the general solutions of Eq. (12) into Eq. (21), leads to the following general solution of Eq. 

(2): 

When  

2

2 2

2 2

2 2

1 1
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4 4 12 2
( ) .

1 12 3 3 6
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    − + −    
    

 (26) 

 

If B=0, so  

2 2
2 24 1 4 1

( ) tanh 4 .
2 2 3 3 6

q
  

    
−  
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And when A=0, we derive 

2 2
2 24 1 4 1
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2 2 3 3 6

q
  

    
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When  

 (29) 

 

If B=0, so 

2 4 0, − 

2 4 0, − 

2
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A B
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 (30) 

 

And when A=0, we derive  

 (31) 

 

When  

2
2 4 1

( ) 2 .
3 3 6

B
q

A B


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

 
= − + − − 
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 (32) 

 

The plot of the above solutions for different values of the parameters is drawn in Figures 3-5. 

 

 

 

Figure 3. plots of Eq. (26) with 𝐴 = 1, 𝐵 = 2, 𝜆 = 3, 𝜇 = 1, 𝑦 = 0. 

2 2
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    
−
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2 4 0, − =
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Figure 4. plots of Eq. (29) with 𝐴 = 1, 𝐵 = 2, 𝜆 = 1, 𝜇 = 1, 𝑦 = 0. 

 

 

Figure 5. plots of Eq. (32) with 𝐴 = 1, 𝐵 = 2, 𝜆 = 2, 𝜇 = 1, 𝑦 = 0. 

 

5. Results and Discussion 

In this study, some types of solutions for Eq. (1) were constructed and given a graphical 

representation. Various kind of graphics of different solutions were drawn in Figures 1-5 which 

vividly present the soliton wave solution. 

By substituting  1 = = −  in Eq. (19), the solution of Eq. (1) by kudryashov method will be 

obtained as follows 

27 21
( ) 2 tan ( t).

6 6
q h x y = − + +  (33) 
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The above solution can be obtained by considering  2 4 4 − =  in Eq. (27) which is the acquired 

solution by Gˊ/G expansion method. Therefore, the outcoms of the two methods are equivalent to 

each other. 

6. Conclusion 

The (2+1)-dimensional Sakovich equation was meticulously investigated in the present work and 

the exact solution of this equation has been attained fruitfully by the effective Kudryashov and Gˊ/G 

expansion methods. As it has been disscussed in the article, the solutions obtained from the two 

methods are equivalent, that is to say, by considering the appropriate values of the parameters, the 

solution obtained from one method can be generalized to the other one as well. Among the main 

advantages of the presented methods, the following features can be considered precisely simplicity, 

directness, reliability and being computerizable. Moreover, Reducing the volume of computer 

calculations of the used methods compared to similar methods is another merit of it. 
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