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 Algebraic attack is an emergent decryption method. The main objective 

in this decryption is to form and solve a set of multivariate polynomial 

equations on finite fields. The present findings show that algebraic 

attacks have been significantly successful and effective on a specific 

type of stream ciphers system and linear-feedback shift register 

systems (LFSRs). One of the reasons for this is that linear functions are 

used for updating LFSRs, although the nonlinear types can also be 

approximated by an appropriate linear function, and this increases the 

necessity of paying attention to it. In the present article, an attempt is 

made to present the main idea of algebraic attacks on stream ciphers 

systems, and to explain these ideas by certain concrete examples. 

Particularly, a synchronous stream cipher system based on LFSRs, 

entitled the LILI stream ciphers, and algebraic attacks on them, will be 

discussed. In this research, the extended linearization algorithm (XL) 

will be used to deal with an attained set of equations. Additionally, 

some of the accelerated extended algorithms (XL) for dealing with the 

set of equations algebraic resulted from the attacks on stream cipher 

systems, will be analyzed and their efficiency will be examined in the 

frame of certain examples. 
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1. Introduction  

The advancement of technology and more powerful processing hardware caused more attention to 

encryption algorithms. Therefore, the importance of algebraic attacks, including effective attacks 

on symmetric cipher systems and especially sequential cipher systems, was revealed. Sequential 

encryption systems have a high encryption speed and are mostly used for cases that need to 

encrypt a lot of information in a logical unit of time. Methods are based on the production of 

polynomial multivariable equations on finite fields. One of the most important categories of 
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sequential ciphers are ciphers based on LFSR. The basic step in algebraic attacks on sequential 

cipher systems is to create and solve a system of multivariable polynomial equations. The 

structure of this article is as follows: an efficient and powerful numerical algorithm known as the 

XL algorithm is introduced to solve this system of equations. In the second part, in order to speed 

up the execution of brute force attacks and increase their efficiency, we will introduce and 

examine some developments method of the standard forms of the XL algorithm, which are known 

as the FXL.  

Research records: Capabilities and challenges of searching on encrypted data were reviewed by 

Najafi [16]. Haj Seyed Javadi [9] presented the use of a residual scheme on key management in a 

hierarchical wireless sensor network. Fuzzy classification system was investigated in order to 

detect intrusion detection in computer networks (see Molin [15]). Several researches have worked 

on the security of authentication systems for sharing data in the cloud (see [1, 2]). Pre-production 

designs for symmetrical combination keys have been presented by Hosseinzadeh and others 

(2015). Algebraic attacks based on non-linear criteria were presented by Eskandari [8]. Other 

studies have been presented by some researchers. The research done by Krause [12] showed that 

this category of efficiency is followed by this category of ciphers. In the following, this program is 

specifically used based on sequential cipher systems in LFSR, and the behaviors of this class of 

operations include ensuring the existence of algebraic equations related to key bits and key bits, as 

well as computational complexity. This program and the calculation of upper bounds for this 

category of calculations have been directly investigated in [11]. 

In recent years, in order to increase the efficiency of algebraic operations on sequential cipher 

systems based on LFSR, acceleration algorithms have been presented and an example of the 

research done in [4] has been published. Different researches have been done by other researchers 

in encryption systems, their security and types of operations, which can be mentioned as an 

example [13]. In the following, we will try to give a brief introduction of XL and FXL algorithms 

to enter the topic. 

History and Background: The XL and FXL algorithms are powerful methods used in data 

analysis and machine learning tasks, particularly for classification and regression problems. These 

algorithms were developed as extensions of the popular XGBoost (eXtreme Gradient Boosting) 

algorithm, which itself is based on gradient boosting techniques. XGBoost gained popularity for 

its ability to handle complex data, large-scale datasets, and diverse types of features effectively. It 

leverages boosting, an ensemble learning technique, to create a strong predictive model by 

combining multiple weak models, such as decision trees. Building upon the success of XGBoost, 

the XL and FXL algorithms were introduced to enhance its capabilities further. 

XL algorithm: The XL algorithm, short for eXtreme Learning, extends XGBoost by 

incorporating a novel approach for the ensemble construction. It introduces an additional 

randomization component to generate diverse and accurate base models. This randomization 

reduces overfitting and enhances the model’s generalization capabilities. Unlike traditional 

boosting algorithms that sequentially add trees one by one, the XL algorithm builds the ensemble 

using a two-step process. At its core, it starts with the same principles as XGBoost—using a loss 

function and optimizing the objective. In the first step, it randomly initializes a subset of base 

models as regressors or classifiers. Then, in the second step, it optimizes the ensemble coefficients 

through a ridge regression process, resulting in an ensemble of base models. 



 A. Babaei et al. / Computational Sciences and Engineering 3(1) (2023) 115-128 117 

 

FXL algorithm: The FXL algorithm, which stands for fully eXtreme Learning, is an improved 

version of the xl algorithm. It addresses the limitation of the initial version by refining the 

construction process and enhancing the model’s robustness and interpretability. The FXL 

algorithm introduces an additional regularization term during the ensemble coefficient 

optimization process. This term encourages sparsity in the ensemble coefficients, leading to a 

more interpretable final model. Furthermore, the FXL algorithm incorporates L1 and L2 

regularization to balance model complexity and predictive performance effectively. 

Examples: To illustrate the application of xl and FXL algorithms, let’s consider a classification 

problem. Suppose we have a dataset with various features used to predict whether a customer will 

churn or not in a telecommunications company. By applying XL or FXL algorithms, we can 

construct a powerful ensemble model that combines multiple weak models (decision trees) to 

make accurate predictions. The XL and FXL algorithms automatically handle feature selection, 

non-linearity, and interaction effects, making them suitable for a wide range of potential 

applications. Their versatility, interpretability, and robustness have made them popular choices in 

various domains, including finance, healthcare, and natural language processing. In conclusion, 

the xl and FXL algorithms are extensions of XGBoost that aim to improve its performance, 

flexibility, and interpretability. These algorithms have gained traction in the machine learning 

community, offering state-of-the-art solutions for challenging data analysis tasks. 

Preliminary definitions: The XL and FXL (eXtended and Fast eXtended Learning) algorithms 

are advanced algorithms used for incremental learning in the field of machine learning. These 

algorithms are specifically designed to handle streaming data, where new information arrives in a 

continuous and sequential manner, making it challenging to train models in a traditional batch 

learning setting. The idea behind these algorithms is to update and adapt the model’s parameters 

or structure incrementally, without having to retrain the entire model from scratch. This allows for 

efficient processing of large volumes of streaming data and the ability to adapt to concept drift 

(changes in the underlying data distribution over time). 

XL and FXL algorithms build upon the popular online learning technique known as Extreme 

Learning Machine (ELM), which is characterized by its simplicity and fast learning speed. ELM 

typically trains a single hidden layer feed forward neural network (SLFN) by randomly initializing 

the input weights and analytically computing the output weights using Moore-Penrose pseudo 

inverse. 

The XL algorithm extends ELM by introducing a hidden layer selection strategy, which 

dynamically adjusts the size and connectivity of the hidden layer based on the importance and 

relevance of each input feature. In this way, XL optimizes the network’s architecture to better 

capture the patterns in the streaming data. 

On the other hand, FXL is an even faster variant of XL, designed to handle high-dimensional data 

and improve computational efficiency. It achieves this by incorporating random Fourier features, 

which approximate the kernel trick commonly used in Support Vector Machines (SVMs). This 

approximation allows the FXL algorithm to achieve similar performance to traditional kernel 

methods while being much faster in practice. These algorithms have found applications in various 

domains, including online prediction, time-series forecasting, and real-time anomaly detection. 

They have been proven to be effective in situations where data arrives sequentially and is subject 

to concept drift. To illustrate their usage, let’s consider a stock market prediction scenario. 
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Suppose you want to predict the future price of a particular stock based on historical data. Using 

the XL or FXL algorithms, you can construct a model that incrementally learns from the 

continuously streaming stock price data. As new stock prices come in, the model adapts and 

updates its parameters, allowing it to capture changing trends and patterns in the market over time. 

In this way, XL and FXL algorithms provide powerful tools for handling streaming data and 

adapting machine learning models in dynamic environments. Their ability to handle concept drift 

and process large volumes of data efficiently makes them a valuable addition to the field of 

incremental learning. 

Expression of research innovation: Algebraic attacks on cryptographic systems are, in fact, an 

attempt to find the key of a cryptosystem using a set of algebraic equations. Algebraic attacks 

were used for the first time in the form of linearization algorithms to find the public key of 

cryptographic systems (see [3]). Later, this idea was developed in the form of XL algorithm to 

solve polynomial equations (see [4]). Next, the algebraic attack based on the XL algorithm was 

successfully used against AES cipher systems, (see [14]). Although subsequent studies showed 

that algebraic attacks do not have acceptable efficiency in dealing with some block cipher systems 

including S-boxes, however, they are a powerful tool in dealing with sequential cipher systems. 

The effectiveness of this type of attacks was first implemented well on a special class of sequence 

cipher systems, the Toyocrypt cipher system, and then these attacks were also developed on LiLI-

128 sequence cipher systems ([5]). Next, it was predicted that the memory-based sequence code 

systems would be resistant to this type of attacks. 

In this research, an attempt is made to comprehensively investigate the characteristics of algebraic 

attacks on LFSR-based sequence cipher systems and in addition, we will analyze the new 

accelerated algorithms. It is expected that after conducting this research, a sufficient knowledge 

regarding be achieved by the impact of brute-force attacks on at least one specific class of LILI 

sequential cipher systems based on LFSRs. In addition, let's achieve an accurate measurement of 

the resistance of this particular class of sequential cipher systems to brute force attacks and their 

accelerated forms. It is tried to analyze the steps in such a way that this method is not only limited 

to this category, but by reviewing the analysis, this method can be implemented on other sequence 

codes as well. 

An algebraic attack is a code breaking method that reduces the problem of decoding the attacked 

code to a problem of generating and solving a set of multivariate polynomial equations. Therefore, 

an algebraic attack on a cryptosystem is equivalent to the problem of finding and solving a system 

of nonlinear equations on a finite field. In most of the attacks that take place on encryption 

systems, one of the basic assumptions is that the structure of the encryption algorithm is known, 

and brute force attacks are no exception to this rule. In addition, we also need a number of 

sequential execution keys. 

2. Sequential ciphers based on LFSR  

We consider the following subsections. 
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2.1. History of cryptography 

At first, there is a shift register of length 𝐿 ∈ 𝑁, which contains a row of  𝐿 registers from left to 

right labeled 𝑅𝐿−1, 𝑅𝐿−2, … . 𝑅1, 𝑅0  each of which contains one bit. Suppose 𝐾0 is the binary value 

in the first register on the right and 𝐾1is the value of the second register from the right, and thus 

𝐾𝐿−1is the value of the left register, then the initial state will be as follows. 

 
Figure 1. The initial state 

 

In the first pulse of the clock, it causes the first register from the left, 𝐾L−1in the register 𝑅L−1to 

move to the register 𝑅L−2 and the register 𝐾L−2 in  𝑅L−2 move to register 𝑅L−3 in the same way so 

that 𝐾1 moves to 𝑅0 and 𝐾0 is placed in the output sequence. This move clears the 𝑅L−1 register. 

To fill this register, we need a linear function with variables 𝑘𝑗 for 𝑗 = 0, . . , 𝐿 − 1. 

To achieve this, we need the Tap Sequence, which is an ordered 𝐿 − 𝑡𝑢𝑝𝑙𝑒 of bits: 

(𝐶L−1, … , C1 , C0)with 𝐶0 = 1. The above function is called linear feedback and we place the 

register 𝐾𝐿 in the register 𝑅L−1. Figure 2 shows a simple design of a clock pulse. 

 
Figure 2. A simple design of a clock pulse 

 

𝑆𝑚 state of LFSR is a bit string that describes all the registers 𝑅𝑗 after 𝑚 + 1 clock pulse and 𝑚 ≥

0. The initial state is called Seed, which cannot be a zero vector           

𝑆0 = (𝐾𝐿−1 , 𝐾𝐿−2, … , 𝐾.). After one clock pulse 𝑆1 =  (𝐾𝐿 , 𝐾𝐿−1, … , 𝐾1). In the general case m≥0 

and Sm= (Km+L-1, Km+L-2, Km+1, Km). Then linear feedback in the form  𝐾𝑚+𝐿 = ∑ 𝐶𝑗𝐾𝑚+𝑗
𝐿−1
𝐽=0 . This 

equation is also called binary regression relation. Figure 3 is a simple design of a shift register 

with linear feedback. 

 

Figure 3. A simple design of a shift register with linear feedback 
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2.2. linear complexity of LFSR 

If 𝑡(𝑥) is an irreducible polynomial of degree 𝐿. The corresponding LFSR has a linear complexity 

L for non-zero initial state. A necessary property for the security of an LFSR is that it has a large 

linear complexity. 

2.3. Sequential codes based on FCSR 

Suppose N>1 and is constant and 𝑞1, . . . . , 𝑞𝑚 ∈  𝑆 , 𝑆 = {0,1, . . . , 𝑁 − 1}. An N-tuple LFSR of 

length m with coefficients 𝑞1,…., 𝑞𝑚 (or Tap) is a discrete state machine so that the state is a 

convergence 𝑎0, … , 𝑎𝑚−1 , 𝑧 and 𝑧 ∈ 𝑍, 𝑎𝑗 ∈ 𝑆. The change of modes is explained below: 

We put ∂ = ∑ qᵢᵢᵢiᵢᵢam𝑞1zm
i=1  and instead of (a0 , a1 , . . . . , 𝑎𝑚−1 , z) we put a1, a2,…., δ(mod N); 

δ(div N). Figure 4 is a simple design of FCSR (z is calculated as N/δ in each step) 

 

Figure 4. A simple design of FCSR  

2.4. SNOW 3G serial code systems 

SNOW 3G includes an LFSR and FSM. LFSR is made of 16 registers, each of which is 32 bits, 

and the feedback is defined using elementary polynomials on the finite field 𝐺𝐹(2³²). FSM is 

based on 32-bit 3 registers 𝑅3, 𝑅2, 𝑅1.The operation performed in FSM is that the inputs come 

from LFSR and are replaced by using 2 insertion tables 𝑆2, 𝑆1. Figure 5 is a plan of SNOW 3G. 

 

Figure 5. A plan of SNOW 3G 
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3. Algebraic attack against symmetric and sequential cipher systems  

Algebraic attack methods are based on the formation and solution of a system of nonlinear 

equations that describe the encryption system. The complexity of the data is of the order of O(M), 

respectively, where 

𝑀 = ∑ 𝐶(𝑛, 𝑖)

𝑑

𝑖=0

 

And n is the size of the mode and d is the degree of the output function, and 𝐶(… , . . . ) represents 

the binomial coefficients [3]. 

3.1. Linearization of brute-force attack 

Suppose we have a quadratic device with m equations and n variables (
𝑛
2

) state of the second 

degree expression and n states of the first degree expression, which in total becomes 
𝑛2+𝑛

2
. 

It is clear that if there is a solution for the device of the first few variables, then it will be a 

solution for the device resulting from linearization, and the opposite case is not true. That is, there 

may be many answers for the linear device, but the original (first) device does not have an answer 

(K. Alimohammadi, A secure key-aggregate authentication cryptosystem for data sharing in 

dynamic cloud storage, (2020)) . 

3.2. Solving nonlinear equations using XL algorithm 

XL algorithm is an equation solving method related to Grubner bases. The cryptanalysts claim that 

this method is effective for all basic sequential cipher systems such as Toyo crypt and 𝐸0 

(Bluetooth) (K. Alimohammadi, A secure key-aggregate authentication cryptosystem for data 

sharing in dynamic cloud storage, (2020)) . 

XL algorithm requires more equations. The XL algorithm is as follows: 

Input: a set of m linear equations with n variables, of degree n. 

Output: One or more solutions for the equation machine if the number of independent equations is 

sufficient. 

Algorithm process: 

1- A degree is chosen (by the person), usually (𝐷 = 𝑑 + 1) 𝐷 > 𝑑 

2- Prepare a list like L of all monographs of degree D-d or less which includes a monograph 

and is of zero degree. 

3- Multiply all the equations in each term of L. (After this step we will have m|L| equation). 

4- Linearize the system. 

5 -Solve the machine using linear algebra. 
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Example: Suppose the device has given the following equations and asked for their answers. 

1 +  𝑋 +  𝑌 +  𝑍 +  𝑊𝑍 +  𝑌𝑍 =  0. 

𝑋 + 𝑍 +  𝑊𝑋 +  𝑊𝑌 +  𝑊𝑍 +  𝑋𝑌 +  𝑋𝑍 +  𝑌𝑍 =  1. 

𝑊 +  𝑌 +  𝑊𝑋 +  𝑋𝑍 +  𝑌𝑍 =  0. 

𝑋 +  𝑊𝑋 +  𝑊𝑌 +  𝑊𝑍 +  𝑌𝑍 = 1. 

At first, it seems that linearization can help us. We have four variables, so there are 10 terms, so 

that 6 terms are second order and 4 terms are linear. Although we only have 4 equations much less 

than 10. 

Now suppose we made a cubic machine (the highest order of terms is 3) cubic machine(
n
3

) +

(
n
2

) + (
n
1

) =
n3

6
+

5

6
𝑛 has n possible sentences. In our example (

4
3

) = 4 there are cubic terms and 

not 14 but only 10 equations are needed. 

3.3. Linear complexity of the XL algorithm 

Naturally, it is easy to check all 2⁴ states for 𝑋, 𝑌, 𝑍, and W, but it takes 2ⁿ steps. 

For 𝑑 = 2 and 𝐷 = 3 and the second order device m, the equation of n unknowns is the result of 

𝑛3

6
+

5

6
𝑛 terms, which 𝑚( 𝑛 + 1) of the equation is the result of a matrix (𝑚𝑛 + 𝑚) × (

𝑛3

6
+

5

6
𝑛) is obtained. With the Gauss elimination method, it will require approximately 

𝑛

2¹⁶
 

operations (𝑚 ≈
𝑛2

6
). 

3.4. Enough number of equations 

If the full-rank matrix is a column, then the answer will be unique, and if the number of rows is 

less than the number of columns, then the full-rank matrix will not be a column. Although the 

condition that the number of rows is equal to the number of columns is not enough for full rank 

columns, because the rows may be the same. The matrix for D = d+1 will be square when 𝑚 ≈
𝑛2

6
 

or  (𝑛 + 1)m =
n3

6
+

5

6
n. 

3.5. FXL algorithm 

In order to speed up the execution of brute force attacks and increase their efficiency, some 

developments use the standard forms of the XL algorithm, which are known as the FXL 

algorithm. Guessing to help solve the equation, the attacker gives random values to some variables 

to guess them, hoping that the degree of D will decrease. After guessing, he performs the XL 

algorithm and finally checks. It determines whether the answers are acceptable or not. 

3.6. XL2 algorithm: Benefit from additional equations with the method 𝑻́ 

We put it (belongs to the new device in XL) 
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𝜏 = {𝑋𝑏[𝑋𝑏 = 𝑋1
𝑏1 , … 𝑋𝑛

𝑏𝑛 , |𝑏| ≤ 𝐷, 𝑋𝑏]}. 

We call 𝑅 = 𝑅⁽ᶛ⁾the new device in XL. Suppose the number of equations and variables are R and 

T respectively. (In the new device in XL) 

If the first device has an answer, the number of independent equations (we denote the rank of the 

device by I) does not exceed 𝑇 − 1. If 𝐼 = 𝑇 − 1 then we expect the XL method to have a unique 

answer. Assume that  𝑇́ the total number of sentences, when multiplied by the variables, still 

belongs to τ. 𝑇́ = |𝜏́𝑖|for each i so that 𝜏́𝑖 = {𝑋𝑏 = 𝑋𝑖𝑋
𝑏𝑒𝜏}. 

Suppose I is not as big as T-D but 𝑐 = 𝑇′ + 𝐼 − 𝑇 > 0. Then 

1- First, we remove all singularities that are not in 𝜏́1from R=R⁽ᶛ⁾. Then, we obtain R₁ relations 

such that every monograph in τ τ́⁄  is a linear combination of monographs in τ́1. 

2- for 𝜏́2 to obtain the equations 𝑅́2, 𝑅2 (we should also have |𝑅2
́ | = 𝐶). 

3 -For each 𝐿 ∈ 𝑅́1، the monograph that is in 𝑋1𝐿 = 0 or in 𝜏́2 can be reduced to 𝜏́2 (using R2). 

4. Efficiency and comparison of brute force attack methods  

Sequential encryption systems play an important and influential role in new symmetric 

encryptions which are significantly used in practice due to their efficiency and related hardware 

issues, which can be, for example, sequence codes that are predominantly used in global mobile 

communication systems (GSM) and it is currently used by more than two billion users. As another 

example, we can mention SNOW serial code systems, which are widely used in mobile recently 

mentioned. That the domestic operators refer to it by different names such as 3G and 4G. 

Therefore, due to the high efficiency and widespread use of this category of encryption systems, it 

is necessary to examine the sequence codes from different aspects, including brute force attacks. 

We try to solidly investigate the properties of algebraic attacks on sequence cipher systems based 

on LFSRs, and in addition, we will analyze the new accelerated algorithms. 

The effectiveness of comparing this algebraic attack based on articles by Shamir, Kipnis, Courtois, 

XL algorithms for solving a system of multivariable equations and also methods to reduce the 

degree of a system of multivariable polynomial equations such as algebraic attack with correlation 

with Latter and algebraic attack Fast is based on the effect of guessing on the complexity of 

solving a system of polynomial equations. 

4.1. Key Generation Mechanisms of LILI Systems and Algebraic Attacks Analysis 

The LILI stream cipher family uses two primary linear feedback shift registers (LFSR), denoted as 

LFSRc   and  LFSRd   , to generate key streams. The configurations and operations of these ciphers 

are as follows: 

LILI-128 Key Generator 

1. Register Configuration: 

o LFSRc  of length L=39. 
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o LFSRd   of length m=89. 

o Total internal state size: 128 bits. 

2. Key Stream Generation: 

o At time t, registers 12 and 20 of LFSRc    are inputs to a function fc, 

( ) ( )12 2 12 20C ,C 2 1
tt t t

cF C C= + +
 ،which outputs an integer between 1 and 4. 

o Fd , the filter function, takes 10 inputs from LFSRd   (specific positions: 80, 65, 44, 

30, 20, 12, 7, 3, 1, 0) and has an algebraic degree of 6. 

o The initial state is determined by XORing a 128-bit key K with a 128-bit IV. If V is 

shorter than 128 bits, it is repeated to fill the size. 

3. Initialization Process: 

o LFSRc   is loaded with the first 39 bits, and LFSRd   with the next 89 bits. 

o Parameters a and b define initialization cycles and the number of bits discarded 

during key stream generation, respectively. 

o Suggested values: a≥1, b∈{32,64,128}. 

LILI-Π Key Generator 

1. Register Configuration: 

o LFSRc of length L=128. 

o LFSRd  of length m=127. 

o Total internal state size: 255 bits. 

2. Key Stream Generation: 

o At time t, registers 1 and 127 of LFSRc are inputs to Fc : 

 FC(C1
t , C127

t ) = 2(C1)t+C127
t + 1  . 

o Fd , the filter function, uses 12 inputs from LFSRd (positions: 122, 96, 80, 65, 44, 30, 

20, 12, 7, 3, 1, 0) and has an algebraic degree of 10. 

3. Initialization Process: 

o Initial states of LFSRc and LFSRd   are derived by XORing K and V, with some bits 

dropped and rearranged to form a 255-bit internal state. 

The generator undergoes multiple setup phases before being ready to produce a key stream. 

4.2. Algebraic Attacks on LILI Systems 

Algebraic attacks on the LILI family involve solving polynomial equations formed from the 

cipher's internal state and key stream bits. The attack's complexity depends on the degree of the 

equations. 
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Attack 1: Guessing Controller States 

1. Method: 

o Guess the initial state of LFSRc. 

o Use the feedback pattern to generate equations for LFSRd 's initial state and key 

stream bits. 

o Solve these equations to verify the guess. 

o If the equations are inconsistent, the guess is incorrect. 

2. Complexity: 

o Requires 218 key stream bits and 2102 equations for LILI−128. 

o Complexity: 2L-1, where L is the length of LFSRc. 

3. Analysis: 

o Effective for systems with low algebraic degrees in Fd . 

o For higher degrees, resistance improves due to increased equation complexity. 

Attack 2: Extracting Sub sequences 

1. Method: 

o Avoid guessing by analyzing independent sub-sequences of the key stream. 

o Use known properties of Fd  to form and solve equations. 

2. Complexity: 

o Requires 257key stream bits and 263 equations for LILI−128. 

o Complexity depends on the number of taps in LFSRd   and the algebraic degree of Fd 

. 

3. Real-time Implementation: 

o Involves pre-computation of Fd 's low-degree multiples. 

o Real-time phase substitutes key stream bits into the equations. 

Factors Affecting Resistance 

The resistance of LILI ciphers to algebraic attacks depends on: 

• Number of taps in LFSRd . 

• Algebraic degree of Fd . 

• Lengths L and m of LFSRc and LFSRd  , respectively. 

Comparison of Attacks 

• Attack 1 has higher computational complexity but requires fewer key stream bits. 
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• Attack 2 is computationally less demanding but needs more key stream bits. 

Conclusions 

LILI systems' security can be improved by: 

1. Increasing the algebraic degree of Fd . 

2. Using larger LFSR lengths. 

3. Introducing nonlinear functions to increase resistance to algebraic attacks. 

Further research and optimization are necessary to balance performance and security effectively. 

4. Conclusion 

A brute force attack is a relatively new method of decryption, which is the problem of decrypting 

the attacked cipher by reduces polynomial equations and solutions to a multivariable product 

problem  

An algebraic attack on a cryptosystem is equivalent to the problem of finding and solving a system 

of nonlinear equations on a finite field. In most of the attacks that are carried out on encryption 

systems, one of the basic assumptions is that the structure of the encryption algorithm is clear, and 

brute force attacks are no exception to this rule. In addition, we also need a number of execution 

keys. 

Regarding the reasons for the effectiveness of brute force attack, the following can be mentioned: 

1. Ability to run on a wide range of encryption systems. 

2. Ability to do algorithm. 

3. Simplicity in its implementation by computer. 

4. The possibility of using secondary information about the password system. 

5. It will be very efficient if existing computers improve. 

A detailed examination of LILI stream ciphers and the analysis of various algorithms for solving 

systems of equations resulting from these attacks will lead to a better understanding of the 

efficiency and vulnerabilities of LFSR-based stream cipher systems. 

The conclusions of this paper, based on findings and analyses of algebraic attacks on LFSR-based 

stream cipher systems, include several key points: 

1. Efficiency of Algebraic Attacks on LFSRs 

Analyses demonstrate that algebraic attacks can effectively compromise LFSR-based stream 

cipher systems. The primary reason for this success lies in the linear nature of LFSRs, which 

simplifies the resulting algebraic equations. Even in cases where nonlinear functions are 

employed, these functions can often be approximated by suitable linear ones, increasing the 

vulnerability of such systems to algebraic attacks. 

2. Application of Numerical Algorithms 
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Numerical algorithms such as the XL (Extended Linearization) algorithm have proven highly 

effective in solving systems of multivariate polynomial equations. The XL algorithm and its 

accelerated variants can efficiently solve equations resulting from algebraic attacks, facilitating 

faster and more efficient decryption. These algorithms play a crucial role in advancing algebraic 

attacks by reducing computational time and increasing accuracy. 

3. Analysis of LILI Stream Ciphers 

The examination of LILI stream ciphers revealed that they are also susceptible to algebraic 

attacks. The structure, which relies on multiple LFSRs, allows for the formation of complex 

multivariate polynomial systems. However, using appropriate equation-solving methods can yield 

satisfactory results. These analyses highlight the need for a closer examination and enhanced 

security for this type of cipher. 

4. The Need to Enhance Security in Stream Cipher Systems The results of this research underscore 

the necessity of improving the resistance of LFSR-based stream cipher systems against algebraic 

attacks. This can be achieved by employing more complex nonlinear functions, increasing the 

number of LFSRs, and leveraging new cryptographic techniques. Moreover, ongoing security 

analysis and evaluation are essential to ensure the robustness of these systems against attacks. 

5. The Future of Algebraic Attacks 

Given the success of algebraic attacks on stream cipher systems and the advancement of numerical 

algorithms, it is anticipated that such attacks will play a more significant role in analyzing 

cryptographic system security in the future. Thus, further research and the development of novel 

methods to counteract these types of attacks are essential. 
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