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 The maximum entropy principle has grown progressively more pertinent to 

queueing systems. The principle of maximum entropy presents an impartial 

framework as a promising method to examine complex queuing processes. In this 

research, the N policy M/G/1 queueing system with a removable server was 

analyzed by using the maximum entropy method. We use maximum entropy 

principle to derive the approximate formulas for the steady-state probability 

distributions of the queue length. The maximum entropy approach is then used to 

give a comparative perusal between the system’s exact and estimated waiting 

times. We demonstrate that the maximum entropy approach is efficient enough 

for practical purpose and is a feasible method for approximating the solution of 

complex queueing systems. 
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1. Introduction  

Optimization of queuing systems (reducing the length of the queue and reducing the waiting time) 

is done according to the assumed appropriate cost functions and based on interesting measures such 

as the expected number of customers in the system, the expected waiting time of customers in the 

system, the expected period of employment (or unemployment) of servers and.... To obtain these 

measurements, it is necessary to identify the variables in the model and obtain their distributions. 

But these distributions have parameters that are usually unknown. so we have to estimate them. 

Usually, the processes of entry or service or both are random, so the interesting measures for 

checking the system, that is, values such as waiting time, the number of customers in the system, 

the duration of the server employment period or unemployment, will also be random variables, and 

determining the probability distribution of these random variables or the minimum mathematical 

expectation values They are considered Sometimes it is difficult or impossible to use classical 
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methods to find the explicit formulas of these probability distributions. In these cases, we use 

numerical methods, One of these methods is the maximum entropy method. The term entropy was 

used for the first time in thermodynamics. 

The maximum entropy principle is a probability inference method which has been widely applied 

in fields such as statistical mechanics and computer performance analysis. Boltzmann (1877) used 

its probabilistic interpretation in statistical mechanics. Planck (1906) documented the relationship 

between entropy and probability, and Shannon, in his famous paper in (1948), used this concept to 

describe the properties of a sequence of symbols and defined it as a criterion for information theory 

[1]. Shannon's entropy is a measure of the uncertainty of a system, that is, the system with more 

uncertainty has less reliability. If we focus on its statistical dimension, we will see the relationship 

between entropy and uncertainty. In fact, uncertainty can be expressed using entropy. Shannon's 

entropy is used in different branches of statistics and other sciences. One of the most important 

applications of Shannon's entropy is the detection of the probability model using the principle of 

maximum entropy, which we describe in this section. 

The maximum entropy principle is utilized to analyses the ordinary queueing system by several 

researchers such as [2] used particle swarm optimization technique to obtain the optimal costs of a 

reiterate G-queueing framework with working malfunction and working leisure including batch 

arrival. [3] have conducted an entropy analysis of a flexible Markovian waiting line with server 

malfunction.  Further, Chauhan (2018) has performed a comparative analysis using MEP for the 

𝑀𝑋/(𝐺1, 𝐺2 )/1 framework with two levels of services. [5] studied an unreliable queueing system 

with Bernoulli feedback and discouraging behavior of the units arriving at the service system. The 

relationship between maximum entropy method and queueing theory has been very thoroughly and 

clearly explained by [6]. Nisha The aspects of general service bulk arrival retrial G-queue including 

working vacation, state-dependent arrival, priority users, and working breakdown are all explored 

in this article. Initially, they have estimated performance metrics including orbit size and long-run 

probabilities in this research work. The maximum entropy approach is then used to give a 

comparative perusal between the system’s exact and estimated waiting times. Apart from that a bi-

objective optimization model is developed to diminish both consumers waiting times and estimated 

costs simultaneously [7]. Jain and Kaur presented a study of unreliable server retrial bulk queue 

with multiphase optional service is analyzed by incorporating the features of balking, Bernoulli 

vacation and Bernoulli feedback. they perform a comparative study of the exact waiting time 

obtained by the supplementary variable technique and the approximate waiting time derived by 

using maximum entropy principle by taking the numerical illustration. To verify the outcomes of 

the model, numerical illustrations and sensitivity analysis have been accomplished [8]. 

In this paper, we study the N policy M/G/1 queueing system with a removable server using the 

maximum entropy method; For this purpose, we first provide a summary of queuing theory and the 

concepts that should be used. Next, we define the entropy function and the maximum entropy 

principle and describe the method of calculating the maximum entropy distributions.   Then we use 

maximum entropy method to obtain the expected waiting time in the queue; Finally, to see how 

reliable the principle of maximum entropy is for calculating the interesting measures of the studied 

systems, we compare the expected waiting time in the queue obtained from the classical method 

with the corresponding measure obtained from the maximum entropy method for different states of 

the investigated queuing systems. 
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In the N policy M/G/1 queueing system with removable server arrivals of customers follow a 

Poisson process with parameter λ and service times are independent and identically distributed 

(i.i.d.) random variables obeying a general distribution. The term ‘removable server’ is just an 

abbreviation for the system of turning on and turning off the server, depending on the number of 

customers in the system. The server can be turned on at arrival epochs or off at departure epochs, 

and during shutdown, it will start providing the service only if the number of applicants in the system 

is N The total number of arriving customers and the system capacity are infinite. If one customer is 

in service, then arriving customers have to wait in the queue until the server is available. We assume 

that customers arrive at the server form a single waiting line and are served in the order of their 

arrivals; (FCFS discipline). Suppose that the server can serve only one customer at a time, and that 

the service is independent of the arrival of the customers. 

1.1 Notations and probabilities 

In this research the following notations and probabilities are used. 

N: threshold 

λ: mean arrival rate. 
1

𝜇
: mean service time. 

𝜌: traffic intensity, where 𝜌 =
𝜆

𝜇
. In the steady state 𝜌 < 1. 

U: service time 

S(u): service time distribution function. 

E(S) : first moment of the service time distribution  

E(S2): second moment of the service time distribution  

E(W): exact expected waiting time in the queue  

E(𝑊∗): approximate expected waiting time in the queue 

𝑃0(0): steady-state probability of no customers in the system when the server is turned off 

𝑃0(𝑛): steady-state probability of n customers in the system when the server is turned off 

𝑃1(𝑛): steady-state probability of n customers in the system when the server is turned on and 

working. 

𝐿𝑜𝑛:expected number of customers in the system when the server is turned on and working.  

𝐿𝑜𝑓𝑓: expected number of customers in the system when the server is turned off.  

𝐿𝑁: expected number of customers in the system.  

2. Problem formulation 

Each queuing system has characteristics that can be used to analyze and optimize that system. These 

characteristics are called interesting measures. Calculating the interesting measures of the system in 

many cases is very difficult and sometimes impossible, so we have to estimate them. One of these 

methods is the maximum entropy method. In this research, the N policy M/G/1 queueing system 

with a removable server was analyzed by using the maximum entropy method. 

2.1. Maximum entropy principle 

The maximization of H(f) is mostly done on the probability densities off, for entropy maximization 

we consider the following conditions: 

1. 𝑓(𝑥) ≥ 0 (Equality is outside the S) 
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2. ∫ 𝑓(𝑥)𝑑𝑥 = 1
.

𝑠
 

3. ∫ 𝑓(𝑥)𝑟𝑖(𝑥)𝑑𝑥 = 𝛼𝑖  , 1 ≤ 𝑖 ≤ 𝑚
.

𝑠
 

Therefore, f is the density on the space S with the constraints 𝛼1, 𝛼2 , … , 𝛼𝑚. 

We use the method of differential and integral calculus to maximize the entropy function, which is 

as follows. 

 We form the following function: 

𝐽(𝑓(𝑥)) = − ∫ 𝑓(𝑥) ln 𝑓(𝑥) 𝑑𝑥 +  𝜆0 (∫ 𝑓(𝑥)𝑑𝑥 − 1) + ∑  𝜆𝑖 (∫ 𝑓(𝑥) 𝑟𝑖(𝑥)𝑑𝑥 −  𝛼𝑖)

𝑚

𝑖=1

 

After the derivative we have: 

𝑑𝐽

𝑑𝑓(𝑥)
= − ln 𝑓(𝑥) − 1 +  𝜆0 ∑  𝜆𝑖 𝑟𝑖(𝑥)

𝑚

𝑖=1

 

By setting the above derivative equal to zero, we obtain the following maximized function: 

 

𝑓(𝑥) = 𝑒  𝜆0−1+∑  𝜆𝑖 𝑟𝑖(𝑥)𝑚
𝑖=1     , 𝑥 ∈ 𝑆 

where   𝜆0,  𝜆1, … ,  𝜆𝑚 are chosen so that it applies in the above conditions.  

2.2. The maximum entropy formulation for the system  

We consider a system Q which has a finite or countable infinite set B of all possible discrete states 

𝐵0, 𝐵1, 𝐵2, … , 𝐵𝑛 , … Suppose 𝑃(𝐵𝑛) is probability that the system Q is in state 𝐵𝑛. Following [1], 

we obtain the entropy function as follows: 

𝐻 = − ∑ 𝑃(𝐵𝑛) ln{𝑃(𝐵𝑛)}𝐵𝑛∈𝑄                                                                                                  (1) 

which is maximized subject to the following two constraints: 

∑ 𝑃(𝐵𝑛) = 1𝐵𝑛∈𝑄                                                                                                                        (2) 

And 

∑ 𝑓𝑘𝑃(𝐵𝑛) = 𝐹𝑘𝐵𝑛∈𝑄           ,       𝑘 = 1, 2, … , 𝑚                                                                          (3) 

where Q is the set of queuing system states and 𝐹𝑘is the expected values defined on the set of several 

suitable functions {𝑓1𝑃(𝐵𝑛)}, {𝑓2𝑃(𝐵𝑛)}, … , {𝑓𝑚𝑃(𝐵𝑛)}. 

The maximum solution of equation (1) under the mentioned constraints is obtained using the 

Lagrange’s method as follows: 

𝐿 = − ∑ 𝑃(𝐵𝑛) ln{𝑃(𝐵𝑛)}𝐵𝑛∈𝑄 − 𝛽0(∑ 𝑃(𝐵𝑛) − 1𝐵𝑛∈𝑄 ) − ∑ 𝛽𝑘(∑ 𝑓𝑘𝑃(𝐵𝑛) − 𝐹𝑘𝐵𝑛∈𝑄 )   𝑚
𝑘=1  (4) 

We derive from this function with respect to 𝑃(𝐵𝑛): 

𝜕𝐿

𝜕𝑃(𝐵𝑛)
= −1 − ln 𝑃(𝐵𝑛) − 𝛽0 − ∑ 𝛽𝑘𝑓𝑘(𝐵𝑛)𝑚

𝑘=1                                                                         (5) 

By putting (5) equal to zero, we have: 
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𝑃(𝐵𝑛) = exp[−𝛽0 − 1 − ∑ 𝛽𝑘𝑓𝑘(𝐵𝑛)𝑚
𝑘=1 ]                                                                                 (6) 

where 𝛽0 is the Lagrange coefficient obtained by normalizing the first constraint, 𝛽𝑘 (k=1,2, 3,…,m) 

is the Lagrange coefficient determined from the second set of constraints. 

Now we want to present the maximum entropy solution for the N policy M/G/1 queueing system 

with a removable server. 

2.3. The three basic known constraints 

For the N policy M/G/1 queueing system, three well-known constraints are stated as follows: 

1. Probability of turning the server off [9]:  

𝑃0(0) = 𝑃0(1) = ⋯ = 𝑃0(𝑁 − 1)                                                                                                (7) 

2. probability that the server is busy [10]: 

∑ 𝑃1(𝑛)∞
𝑛=1 = 𝜌                                                                                                                          (8) 

3. expected number of customers in the system [11] 

𝐿𝑁 =
𝑁−1

2
+ 𝜆 𝐸(𝑆) +

𝜆2 𝐸(𝑆2)

2[1−𝜆𝐸(𝑆)]
                                                                                                   (9) 

2.4. The maximum entropy model 

In order to develop the steady-state probabilities 𝑃0(𝑛) and 𝑃1(𝑛) by using maximum entropy 

method, according to (1) and (7)– (9) we formulate the maximum entropy model as follows: 

𝐻 = − ∑ 𝑃0(𝑛) ln 𝑃0(𝑛)𝑁−1
𝑛=0 − ∑ 𝑃1(𝑛) ln 𝑃1(𝑛)∞

𝑛=1                                                                      (10) 

or equivalently 

𝐻 = −𝑁𝑃0(0) ln 𝑃0(0) − ∑ 𝑃1(𝑛) ln 𝑃1(𝑛)∞
𝑛=1                                                                              (11) 

Now maximizing (11) subject to the following three constraints: 

i. normalizing condition: 

∑ 𝑃0(𝑛) +𝑁−1
𝑛=0 ∑ 𝑃1(𝑛)∞

𝑛=1 = 𝑁𝑃0(0) + ∑ 𝑃1(𝑛)∞
𝑛=1 = 1                                                            (12) 

ii. the probability that the server is busy: 

∑ 𝑃1(𝑛)∞
𝑛=1 = 𝜌                                                                                                                               (13) 

iii. the expected number of customers in the system: 

∑ 𝑛𝑃0(𝑛) +𝑁−1
𝑛=0 ∑ 𝑛𝑃1(𝑛)∞

𝑛=1 =
𝑁(𝑁−1)

2
𝑃0(0) + ∑ 𝑛𝑃1(𝑛)∞

𝑛=1 = 𝐿𝑁                                             (14) 

By multiplying the normalization condition by ω, the probability of the server being busy by 𝜃 and 

the expected number of customers in the system by 𝜙, the Lagrange function h can be written as 

follows (ω, 𝜃 and 𝜙 are the Lagrangian multipliers corresponding): 

ℎ = −𝑁𝑃0(0) ln 𝑃0(0) − ∑ 𝑃1(𝑛) ln 𝑃1(𝑛)∞
𝑛=1 −  𝜔[𝑁𝑃0(0) + ∑ 𝑃1(𝑛)∞

𝑛=1 − 1] −

𝜃[∑ 𝑃1(𝑛)∞
𝑛=1 − 𝜌] − 𝜙 [

𝑁(𝑁−1)

2
𝑃0(0) + ∑ 𝑛𝑃1(𝑛)∞

𝑛=1 − 𝐿𝑁]                      (15) 
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The maximum entropy solutions are obtained by taking the partial derivatives of h with respect to 

𝑃0(0) and 𝑃1(𝑛), and setting the results equal to zero, 

𝜕ℎ

𝜕𝑃0(0)
= −𝑁 ln 𝑃0(0) − 𝑁 − 𝜔𝑁 − 𝜙

𝑁(𝑁−1)

2
= 0                                                                   (16) 

and  

𝜕ℎ

𝜕𝑃1(𝑛)
= − ln 𝑃1(𝑛) − 1 − 𝜔 − 𝜃 − 𝜙𝑛 = 0                                                                          (17) 

It follows from (16) and (17) that we obtain: 

𝑃0(0) = 𝑒−(1+𝜔)𝑒
−(𝑁−1)𝜙

2                                                                                                          (18) 

and 

𝑃1(𝑛) = 𝑒−(1+𝜔)𝑒𝜙𝑛𝑒−θو 𝑛 = 1,2, …                                                                                     (19) 

suppose that: 

𝛼 = 𝑒−(1+𝜔) و       𝛽 = 𝑒−𝜙 و         𝛾 = 𝑒−θ 

Then 𝑃0(0) and 𝑃1(𝑛) can be written as follows: 

𝑃0(0) = 𝛼𝛽
(𝑁−1)

2                                                                                                                       (20) 

and 

𝑃1(𝑛) = 𝛼𝛽𝑛𝛾    ,    𝑛 = 1 ,2, …                                                                                               (21) 

Substituting (20) and (21) into (12)– (14), respectively, yields 

𝑁𝛼𝛽
(𝑁−1)

2 = 1 − 𝜌                                                                                                                    (22) 

and 

∑ 𝛼𝛽𝑛𝛾∞
𝑛=1 =

𝛼𝛽𝛾

1−𝛽
= 𝜌                                                                                                            (23) 

From (22), we get 

𝛼 =
1−𝜌

𝑁
𝛽

−(𝑁−1)

2                                                                                                                         (24) 

After the algebraic manipulations, we obtain c from (23) given by 

𝛾 =
𝜌(1−𝛽)

𝛼𝛽
                                                                                                                                (25) 

Substituting (24) into (25) finally gives 

𝛾 =
𝑁𝜌

1−𝜌
𝛽

𝑁−3

2 (1 − 𝛽)                                                                                                               (26) 

after substitute (24) and (26) into (20) and (21), respectively, yielding 

𝑃0(0) =
1−𝜌

𝑁
                                                                                                                            (27) 
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and 

𝑃1(𝑛) = 𝜌(1 − 𝛽)𝛽𝑛−1                        𝑛 = 1, 2, …                                                                    (28) 

The expected number of customers in the system when the server is turned off 

𝐿𝑜𝑓𝑓 = ∑ 𝑛 𝑃0(𝑛)𝑁−1
𝑛=1 =

𝑁(𝑁−1)

2
𝑃0(0) =

(𝑁−1)(1−𝜌)

2
                                                               (29) 

Note that 𝐿𝑁 = 𝐿𝑜𝑛 + 𝐿𝑜𝑓𝑓. From (29), the expected number of customers in the system when 

 the server is turned on and working, 𝐿𝑜𝑛, is given by 

𝐿𝑜𝑛 = ∑ 𝑛𝑃1(𝑛)∞
𝑛=1 = 𝐿𝑁 − 𝐿𝑜𝑓𝑓 = 𝐿𝑁 −

(𝑁−1)(1−𝜌)

2
                                                             (30) 

substituting (28) into (30) finally gets 

𝛽 = 1 −
𝜌

𝐿𝑜𝑛
                                                                                                                              (31) 

We substitute (31) into (24) to determine the other unknown Lagrangian multiplier a as 

𝛼 =
1−𝜌

𝑁
(1 −

𝜌

𝐿𝑜𝑛
)

−(𝑁−1)

2
                                                                                                             (32) 

Substituting (31) into (28), we finally obtain 

𝑃1(𝑛) =
𝜌2

𝐿𝑜𝑛
(1 −

𝜌

𝐿𝑜𝑛
)

𝑛−1

,                        𝑛 = و2 و1 …                                                              (33) 

The exact expected waiting time in the queue 

Using Little’s formula, it follows that: 

𝐸(𝑊) =
1

𝜆
(𝐿𝑁 − 𝜌)                                                                                                                   (34) 

The approximate expected waiting time in the queue 

We define the idle state and the busy state as follows: 

I. Idle state denoted by I: the server is turned off and the number of customers waiting in the 

system is less than N. 

II. Busy state denoted by B: the server is busy and provides service to a customer. 

We want to get the mean arrival time and mean service time for both I and B modes. Suppose W 

represents the time that the applicant C waits in the queue to receive service and also suppose that 

when the customer C enters the system, there are n customers ahead in the queue waiting to receive 

the service and the system It is in one of I and B states. 

I. In idle state I: The server will be turned on after (N-n-1) customers arrive in the system. 

Thus, customer C will be served until (N-n-1) customers arrive and n customers in front of 

him waiting for service. The mean arriving time of (N-n-1) customers and the mean service 

time of n customers is given by 
𝑁−𝑛−1

𝜆
 and 

𝑛

𝜇
 respectively 

II. In busy state B: Since the server is turned on, customer C only waits n customers in front of 

him to be served. The mean service time of n customers is 
𝑛

𝜇
. 
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Therefore, the approximate expected waiting time in the queue is equal 

𝐸(𝑊∗) = ∑ [
𝑛

𝜇
+

𝑁−𝑛−1

𝜆
]𝑁−1

𝑛=0 𝑃0(0) + ∑
𝑛

𝜇
𝑃1(𝑛)∞

𝑛=0                                                          (35) 

3. Comparision Study 

Now, in order to see how accurate the maximum entropy solutions are and whether the maximum 

entropy method is a reliable method for calculating the effective sizes of the system or not, we 

compare the expected waiting time in the queue obtained from the classical method with the 

maximum entropy method. we present specific numerical comparisons between the exact results 

and the approximate results; For this, we use MATLAB software to calculate the exact expected 

waiting time in the queue and the approximate expected waiting time in the queue and the relative 

error percentages. 

Dev =
|exact value −  approximate  value|

exact value
× 100                                                                                     (36) 

To compare E(W) and 𝐸(𝑊∗), we use the following three queuing systems, which are special cases 

of the N policy M/G/1 queueing system with a removable server: 

1) The N policy M/M/1 queueing system with a removable server. 

2) The N policy 𝑀/𝐻2/1 queueing system with a removable server. 

3) The N policy 𝑀/𝐸2/1queueing systems with a removable server. 

where 𝐸2 is the symbol of Erlang distribution type 2 and 𝐻2 represents hyperexponential type 2. 

3.1. The N policy M/M/1 queueing system with a removable server                                                       

From [12], we obtain 

𝐿𝑁 =
𝑁−1

2
+

𝜌

1−𝜌
                                                                                                                          (37) 

It implies from (34) that 

𝐸(𝑊) =
1

𝜆
[

𝑁−1

2
+

𝜌2

1−𝜌
]                                                                                                                (38) 

Substituting (30) and (37) into (33), we finally get 

𝑃1(𝑛) = 𝜌 [
1

𝑁−1

2
+

1

1−𝜌

] [1 −
1

𝑁−1

2
+

1

1−𝜌

]

𝑛−1

,                        𝑛 = 1, 2, …                                              (39) 

Substituting (27) and (39) into (35) yields 

𝐸(𝑊∗) =
1

𝜆
[

𝑁−1

2
+

𝜌2

1−𝜌
]                                                                                                              (40) 

It is interesting to note that the approximate result 𝐸(𝑊∗) obtained in (40) is identical to the exact 

result 𝐸(𝑊) obtained in (38). 
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We find that the two results are equivalent and using the maximum entropy method exactly achieves 

the results of the classical methods. 

3.2 The N policy M/H_2/1 queueing system with a removable server 

From [13] we get 

𝐿𝑁 =
𝑁−1

2
+ 𝜌 +

𝑞1𝜌1
2+𝑞2𝜌2

2

1−𝜌
                                                                                                          (41) 

Where 𝑞1 + 𝑞2 = 1, 𝜌1 =
𝜆

𝜇1
, 𝜌2 =

𝜆

𝜇2
 and 𝜌 = 𝑞1𝜌1 + 𝑞2𝜌2. 

From (34) and (41), 

𝐸(𝑊) =
1

𝜆
[

𝑁−1

2
+

𝑞1𝜌1
2+𝑞2𝜌2

2

1−𝜌
]                                                                                                     (42) 

Substituting (27) and (31) into (35) again, we have 

𝐸(𝑊∗) = ∑ [
𝑛

𝜇
+

𝑁−𝑛−1

𝜆
]𝑁−1

𝑛=0
1−𝜌

𝑁
+ ∑

𝑛

𝜇

𝜌2

𝐿𝑜𝑛
(1 −

𝜌

𝐿𝑜𝑛
)

𝑛−1
∞
𝑛=1                                                    (43) 

Where 
1

𝜇
=

𝑞1

𝜇1
+

𝑞2

𝜇2
 and 𝐿𝑜𝑛 is given in (30). 

We choose 𝑞1 = 0/3, 𝑞2 = 0/7, 𝜇1 = 0/7, 𝜇2 = 1, and varying the values of λ for two cases (i) N 

= 5 and (ii) N = 10. We perform a comparative analysis for the expected waiting time in the queue 

for the N policy 𝑀/𝐻2/1 queueing system between the approximate results obtained 

 

Table 1. Comparison between the approximate results and the exact results for the N policy 𝑀/𝐻2/1 queueing system 

with a removable server  (N=5) 

λ E(W) 𝐸(𝑊∗) Dev (%) 

0.1 20.1310 20.1296 0.0065 

0.3 7.1842 7.1803 0.0548 

0.5 5.2635 5.2570 0.1247 

0.7 6.1627 6.1535 0.1491 

0.8 9.1786 9.1681 0.1144 

0.9 34.5876 34.5758 0.0342 

 

Table 1 has shown that the relative error percentages are less than 1%. 

 

Table 2. Comparison between the approximate results and the exact results for the N policy 𝑀/𝐻2/1 queueing system  

with a removable server (N=10) 

λ E(W) 𝐸(𝑊∗) Dev (%) 

0.1 45.1310 45.1296 0.0029 

0.3 15.5175 15.5136 0.0254 

0.5 10.2635 10.2570 0.0639 

0.7 9.7341 9.7249 0.0944 

0.8 12.3036 12.2931 0.0853 

0.9 37.3654 37.3536 0.0316 
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Table 2 has shown that the relative error percentages are less than 1%. 

3.3. The N policy M/E_2/1queueing systems with a removable server 

From [14], we have 

𝐿𝑁 =
𝑁−1

2
+

𝜌(𝜌−𝑘𝜌+2𝑘)

2𝑘(1−𝜌)
                                                                                                                (44) 

Thus we get 

𝐿𝑜𝑛 = 𝐿𝑁 − 𝐿𝑜𝑓𝑓 = 𝐿𝑁 −
(𝑁−1)(1−𝜌)

2
                                                                                           (45) 

From (34), we have 

𝐸(𝑊) =
1

𝜆
(

(𝑁−1)

2
+

(1+𝑘)𝜌2

2𝑘(1−𝜌)
)                                                                                                       (46) 

Substituting (27) and (33) into (35), it finally gets 

𝐸(𝑊∗) =
1+𝜌

𝜆
𝐿𝑁 −

1

𝜆
𝐿𝑜𝑛 =

𝜌

𝜆
𝐿𝑁 +

1

𝜆
𝐿𝑜𝑓𝑓                                                                                (47) 

For N policy 𝑀/𝐸2/1queueing systems with a removable server, we consider the value of k equal 

to 2. 

In the comparative analysis between E(W)  and 𝐸(𝑊∗) of the investigated queuing system, we 

consider the value of μ equal to 1, therefore the value of ρ will be equal to λ. 

Table 3. Comparison between the approximate results and the exact results for the N policy 𝑀/𝐸2/1 queueing system 

with a removable server  (N=5) 

λ= ρ E(W) 𝐸(𝑊∗) Dev (%) 

0.1 20.1083 20.0833 0.1245 

0.3 7.0631 6.9881 1.0733 

0.5 4.8750 4.7500 2.6316 

0.7 4.7821 4.6071 3.7984 

0.8 5.7000 5.5000 3.6364 

0.9 9.1972 8.9722 2.5077 

 

Table 3 has shown that the relative error percentages are less than 4%. 

 

Table 4. Comparison between the approximate results and the exact results for the N policy 𝑀/𝐸2/1 queueing system 

with a removable server  (N=10) 

 

λ= ρ E(W) 𝐸(𝑊∗) Dev (%) 

0.1 45.1083 45.0833 0.0555 

0.3 15.3964 15.3214 0.4895 

0.5 9.8750 9.7500 1.2821 

0.7 8.3536 8.1786 2.1397 

0.8 8.8250 8.6250 2.3188 

0.9 11.9750 11.7500 1.9149 
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Table 4 has shown that the relative error percentages are less than 3%. 

4. Conclusions 

In this paper, we have developed approximate steady-state solutions for the N policy M/G/1 

queueing system by using maximum entropy principle. A comparative analysis was made between 

exact results and approximate results; For this purpose, use three queuing systems which are special 

cases of the N policy M/G/1 queueing system with a removable server; results has shown that the 

relative error percentages are very small; Therefore, it can be claimed that the maximum entropy 

method is sufficiently robust to estimate the interesting measures (service time distribution 

functions) of the N policy M/G/1 queueing system with a removable server. 
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