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 The fuzzy c-means (FCM) algorithm is widely used for image 

segmentation based on clustering. However, it is sensitive to noise, and 

its convergence is affected by the data distribution. FCM relies on the 

Euclidean distance metric, which fails to account for variations in the 

distances within similar and compact clusters. Moreover, the distance 

metric is not locally adaptive to the shape of clusters. This paper 

introduces a robust Gustafson-Kessel (RGK) clustering algorithm to 

address these limitations for brain tissue segmentation using MRI 

images. To achieve accurate segmentation under varying noise levels 

and intensity non-uniformity (INU), a Wiener filter integrated with 

wavelet transform (WFWT) is employed as a preprocessing step to 

enhance image quality while preserving object edges. The Mahalanobis 

distance is used for clustering to better adapt to the shape of the clusters. 

Additionally, the RGK algorithm incorporates membership matrix 

filtering to exploit the local spatial constraint. The proposed RGK 

algorithm was evaluated using two datasets: the BrainWeb simulated 

dataset and MRI scans from 10 healthy individuals at the Golghasht 

Medical Imaging Center in Tabriz (GMICT), Iran. In RGK, it is not 

necessary to compute the distance between pixels within local spatial 

neighbors and clusters. Experimental results demonstrate that the RGK 

algorithm outperforms traditional FCM-based methods in the 

segmentation of brain tissues. 
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1. Introduction  

Medical image analysis is an essential step in clinical assessment that depends on the accuracy of 

the segmentation process. Medical image segmentation (MIS) is a necessary stage in smart medicine 

due to significant improvements in assessment performance. The MIS process separates the desired 
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regions for behavioral analysis and morphological changes of different regions to detect diseases 

[1-3]. This process in magnetic resonance imaging (MRI) depends on many factors, such as intensity 

non-uniformity (INU), noise, proximity of tissues to each other, and the intrinsic properties of brain 

tissues. INU often causes incorrect segmentation of brain tissues due to the overlap in the intensity 

ranges of different tissues [1, 4]. MRI is a popular imaging modality suitable for examining tissue-

level details. There are three main tissues in the human brain: cerebrospinal fluid (CSF), gray matter 

(GM), and white matter (WM), which play a vital role in quantitative brain analysis for diagnostic 

purposes. Additionally, the quality of MRI images depends on the gray levels of these tissues. 

Several brain disorders, such as multiple sclerosis (MS), schizophrenia, and Alzheimer’s disease, 

can be recognized in these regions [5-8]. Distinguishing between different brain tissues is a major 

challenge for many radiologists. Manual segmentation is time-consuming and can produce 

inconsistent findings due to intra-observer and inter-observer variability. Therefore, radiologists 

need an accurate automated approach for segmenting multiple brain regions. Different approaches, 

such as thresholding-based methods, clustering-based methods, contour-based methods, and deep 

learning-based methods, have been developed for medical image segmentation [9, 10]. Threshold-

based methods [11, 12] assign pixels to suitable categories by calculating single or multiple gray 

thresholds for the image. These approaches often lack efficiency in the presence of artifacts, noise, 

and fluctuations in gray-scale values [13]. Contour-based methods [14, 15] segment the image by 

constructing an energy function. These methods require an initial contour and tuning of parameters. 

Moreover, they cannot effectively track topological changes of objects and perform poorly when 

INU is present in the image [16]. Deep learning-based methods face drawbacks such as slow training 

speed, dependence on data volume, and complex structures [10]. One of the most popular image 

segmentation techniques is clustering, which partitions a set into clusters so that members of the 

same cluster are similar, while members of different clusters are dissimilar. To address the 

aforementioned problems, this study focuses on these methods.INU in MRI can result from many 

factors, including B1 and B0 field inhomogeneities and patient-specific interactions. Therefore, bias 

correction is often an essential step to remove INU before performing quantitative analysis of MRI 

images. Li et al. [4] presented a new energy minimization method called multiplicative intrinsic 

component optimization (MICO) for MRI bias field estimation and tissue segmentation. Adhikari 

et al. [17] proposed a conditional spatial fuzzy c-means (CSFCM) clustering algorithm to improve 

the performance of conventional FCM clustering for the segmentation of MRI tissues. Elazab et al. 

[18] introduced an adaptively regularized kernel-based FCM (ARKFCM) for segmenting multiple 

tissues based on MRI images. Bakhshali [19] presented an improved and robust FCM method based 

on information theory to estimate and correct INU while minimizing noise effects. Moeskops et al. 

[20] developed a convolutional neural network (CNN) for automatic segmentation of MRI brain 

images. Ghosh et al. [21] introduced a spatial modified FCM algorithm to address noise and INU in 

MRI images. Conventional FCM is sensitive to initialization; hence, this method applied a chaotic 

firefly algorithm (CFA) to mitigate this issue. Hassan et al. [5] proposed a robust spatial fuzzy 

Gaussian mixture model (GMM) for segmenting MRI and ultrasound imaging modalities. Kouhi et 

al. [1] introduced a robust FCM algorithm combining spatial constraints and local information from 

the membership matrix for brain MRI segmentation. Threshold-based methods are popular for 

image segmentation that utilize histogram images. Bandyopadhyay et al. [3] presented an altruistic 

Harris hawk optimization (AHHO) for the segmentation of brain MRI images. One drawback of 

conventional FCM is its tendency to frequently get trapped at local minima. To overcome this 

challenge, Verma et al. [22] proposed a population-based hybrid FCM with particle swarm 
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optimization (FCMPSO) for brain image segmentation. Tongbram et al. [23] presented a novel 

approach using FCM and the whale optimization algorithm (FCMWOA) to address this issue. 

Natarajan et al. [9] proposed a minimally parametrized segmentation approach with dual 

metaheuristic optimization algorithms (including artificial bee colony (ABC) and JAYA algorithm) 

in conjunction with FCM for the detection of anomalies in MRI brain images. Conventional FCM 

performs poorly in the presence of imaging artifacts due to its disregard for spatial information. To 

address this problem, Chighoub and Saouli [24] presented a fully integrated approach that 

incorporates spatial information for brain MRI image segmentation. Kumar et al. [25] introduced 

kernel picture FCM with spatial neighborhood information for MRI image segmentation in the 

presence of vague boundary structures, noise, and nonlinearity. Identifying boundary information 

in brain images is difficult because of low contrast. Khaled et al. [26] developed a learning method 

to detect boundary information for brain image segmentation. Khatri et al. [27] introduced picture 

fuzzy set-based clustering to address noise, vagueness, and non-linear structures in an image, termed 

kernel FCM for picture fuzzy set, using the Kullback-Leibler divergence measure (KFPKL).MRI 

image segmentation becomes increasingly challenging in the presence of artifacts such as noise, 

partial volume effects, and bias field effects. Kumar et al. [28] proposed the bias-corrected 

intuitionistic FCM with spatial neighborhood information (BCIFCMSNI) to tackle these issues. 

Emam et al. [2] presented a modified reptile search algorithm (MRSA) for global optimization, 

selecting optimal thresholding values for multilevel brain image segmentation. The segmentation of 

MRI images is influenced by sudden changes in intensity between the boundaries of brain tissues. 

Singh et al. [6] introduced an intuitionistic FCM and local information-based discrete cosine 

transform (DCT) filtering for rapid brain MRI segmentation. Kollem et al. [29] presented an 

optimized multi-kernel FCM method for brain tumor MRI image segmentation. MRI image 

segmentation is a challenging problem due to spatially distributed noise and uncertainty at the 

boundaries of soft tissues. To address this challenge, Solanki and Kumar [30] proposed probabilistic 

intuitionistic FCM with spatial constraints (PIFCMSC). Alagarsamy et al. [31] introduced ABC 

combined with an interval type-II fuzzy logic system algorithm for brain tumor segmentation. Kalti 

and Touil [32] proposed a robust contextual FCM to address the sensitivity of the FCM algorithm 

to noise when clustering image pixels. Mohammadi et al. [33] presented a case series using marker-

controlled watershed segmentation and FCM for meningioma segmentation from contrast-enhanced 

T1-weighted MRI images. Singh et al. [8] introduced a novel method based on incorporating local 

spatial and gray level information for segmenting MRI images under INU and noisy conditions. 

Houssein et al. [10] proposed a threshold-based method using an oppositional snake optimization 

algorithm (OSOA) for segmentation of computed tomography (CT) liver images. Shekari and 

Rostamian [34] presented a contour-based method and FCM for brain tumor segmentation from 

MRI images. Tian and Wang [35] developed a level set model (contour-based approach) for 

segmentation of intervertebral disc MRI images. Conventional FCM is sensitive to noise and 

initialization. To address these problems, optimized FCM approaches such as FCMPSO and 

FCMWOA have been presented, but these methods often lack appropriate performance under 

different INU conditions. Additionally, many population-based optimization algorithms, such as 

PSO, require parameter tuning to balance exploration and exploitation phases, and these parameters 

can significantly impact segmentation accuracy. Kernel-based approaches, such as ARKFCM, are 

usually ineffective for non-spherical data and tend to be computationally intensive. In level set-

based methods, such as MICO, the edge-stopping function depends on the image gradient. This 

reliance causes only objects with edges defined by the gradient to be segmented. The implicit 
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functions in these approaches require frequent reinitialization to maintain the signed distance 

property [36]. Threshold-based methods, such as AHHO and OSOA, are unsuitable for images with 

flat and broad valleys. These methods typically neglect spatial information during the segmentation 

process and are extremely sensitive to noise and INU. Picture fuzzy system approaches, such as 

KFPKL, often lack sufficient robustness against noise and outliers. Deep learning-based methods 

require substantial computational resources, graphics processing units (GPUs), and large amounts 

of memory, making them time-consuming. Furthermore, these methods are dependent on the 

volume and quality of the data. The dissimilarity index in presented FCM-based methods, such as 

FCM, KFPKL, and BCIFCMSNI, is not always a representative point for compact clusters. Using 

the Euclidean distance in these approaches disregards the variation in distance among data points in 

similar clusters. Moreover, the performance of FCM-based methods is generally satisfactory only 

when the clusters in the data are roughly the same size and shape. To overcome these problems, we 

propose a robust Gustafson-Kessel (RGK) algorithm for brain tissue segmentation based on MRI 

images.  This study presents a novel RGK clustering algorithm that enhances segmentation accuracy 

across various noise and INU conditions. Our key contributions are as follows: 

1. A significant challenge in MRI analysis is that the intensities are acquired in arbitrary units, 

resulting in variations between scanning parameters and studies that may exceed the actual 

biological differences in the images. To address this issue, we propose using a brain 

extraction method to mitigate these inconsistencies. Additionally, to overcome noise and 

intensity non-uniformity (INU) while preserving image details, we introduce a preprocessing 

step using a Wiener filter combined with a wavelet transform (WFWT). 

2. The proposed RGK algorithm introduces a novel image segmentation method for MRI by 

considering clusters with elliptical shapes. Unlike other FCM-based algorithms, which 

assume hyper-spherical cluster shapes, the RGK algorithm accommodates the elliptical 

geometry, enabling more accurate segmentation. This approach allows the RGK algorithm 

to better preserve image details, even in the presence of high noise levels and varying 

intensity non-uniformity (INU) conditions. 

3. The proposed method does not require parameter tuning, simplifying its application. 

4. The performance of the proposed RGK algorithm was validated using 41 brain MRI images 

from the BrainWeb dataset under various noise and INU conditions. Additionally, it was 

tested on 10 healthy individuals who underwent imaging at the Golghasht Medical Imaging 

Center in Tabriz (GMICT), Iran. The RGK algorithm's performance was further compared 

to several FCM-based approaches, using average Dice, Jaccard, and contour matching 

criteria for evaluation. 

 The remainder of this article is structured as follows: Section 2 reviews FCM and GK algorithms. 

Section 3 presents the proposed RGK algorithm. Section 4 details the datasets used and the 

experimental results. Finally, Section 5 concludes the study and suggests directions for future 

research. 

2. FCM and GK Clustering Algorithms 

Soft and hard clustering methods are two approaches for clustering process. In soft clustering, every 

pixel can be allocated to all clusters with different membership values. FCM is the most popular 

soft clustering method. In K-Means clustering, only one cluster is allocated to each point, but in 
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FCM one cluster can be allocated to two or more clusters [37]. The FCM algorithm is presented by 

Bezdek [38] which improves the performance of K-means based on membership matrix 𝑢𝑖𝑗. For an 

image I(x,y) with grayscale values 𝑥𝑖  (𝑖 = 1, 2, … , 𝑁) and cluster centers 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝐶} there 

is a membership value 𝑢𝑖𝑗 for each pixel i in the jth clusters (j=1, 2,…, c). The cost function in FCM 

is defined as follows: 

𝐽𝐹𝐶𝑀 = ∑ ∑ 𝑢𝑖𝑗
𝑞(𝑥𝑖 − 𝑣𝑗)

2𝑐
𝑗=1

𝑁
𝑖=1                                                                                                               (1) 

with the following constraint: 

∑ 𝑢𝑖𝑗 = 1 ∀𝑖𝑐
𝑗=1                                                                                                                                                                (2) 

where 𝑣𝑗  and q (q>1) are cluster center and fuzzy exponent, respectively. 

In FCM, the membership function and cluster centers are iteratively updated as follows: 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑣𝑘‖

2

‖𝑥𝑖−𝑣𝑗‖
2)

2
𝑞−1

𝑐
𝑗=1

                                                                                                                           (3) 

𝑣𝑗 =
∑ (𝑢𝑖𝑗

𝑞𝑥𝑖)𝑁
𝑖=1

∑ (𝑢𝑖𝑗
𝑞)𝑁

𝑖=1

                                                                                                                                     (4) 

The algorithmic steps involved for FCM is summarized in Algorithm 1. 

 

Algorithm 1: FCM algorithm steps 

Input: MRI image, number of cluster centers, fuzzy exponent q, and stop criterion η 

Step 1: Initialization membership matrix 𝑈(𝜏) 

Step 2: Update cluster centers 𝑣(𝜏+1) using Eq. (4). 

Step 3: Update membership matrix 𝑈(𝜏+1) using Eq. (3). 

Step 4: if max‖𝑈(𝜏+1) − 𝑈(𝜏)‖ ≤ 𝜂, then stop, otherwise set 𝜏 = 𝜏 + 1 and go 

Step 2 

Output: cluster centers and membership matrix. 

 

In FCM, the clusters are assumed to be spherical. Therefore, the performance of FCM is adequate 

when the clusters in the data are roughly the same size and shape. In contrast, the GK algorithm is 

suitable for detecting ellipsoidal cloud clusters with varying sizes and orientations to different 

degrees [39, 40]. The main characteristic of GK is its local adaptation of the distance index to the 

cluster shape by estimating the covariance matrix [41]. Gustafson and Kessel [42] suggested an 

extension of FCM to detect different geometrical shapes by using the Mahalanobis distance instead 

of the Euclidean distance in FCM. The cost function in GK is defined as follows: 

𝐽𝐺𝐾 = ∑ ∑ 𝑢𝑖𝑗
𝑞 . (𝑥𝑖 − 𝑣𝑗)

𝑇
. 𝐴𝑗 . (𝑥𝑖 − 𝑣𝑗)𝑐

𝑗=1
𝑁
𝑖=1                                                                                                   (5) 

where the norm matrix 𝐴𝑗 is a positive definite symmetric matrix. Utilizing the Lagrange multiplier 

technique, Eq. (4) can be converted to an unconstrained optimization problem that minimizes the 

following cost function: 

𝐽𝐺𝐾 = ∑ ∑ 𝑢𝑖𝑗
𝑞 . (𝑥𝑖 − 𝑣𝑗)

𝑇
. 𝐴𝑗 . (𝑥𝑖 − 𝑣𝑗)𝑐

𝑗=1
𝑁
𝑖=1 − ∑ 𝜆𝑖(∑ 𝑢𝑖𝑗 − 1𝑐

𝑗=1 ) + ∑ 𝛽𝑗 . (𝑑𝑒𝑡(𝐴𝑗) − 𝜌𝑗)𝑐
𝑗=1

𝑁
𝑖=1                           (6) 

where 𝛽𝑗 a set of Lagrange multipliers. Also, 𝜌𝑗 is a cluster volume which is usually considered to 

1 for each cluster.  
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The membership function, cluster centers, and covariance matrix are updated as follows: 

𝑢𝑖𝑗 = (
(𝑥𝑖−𝑣𝑟)𝑇.𝐴𝑟.(𝑥𝑖−𝑣𝑟)

∑ (𝑥𝑖−𝑣𝑗)
𝑇

.𝐴𝑗.(𝑥𝑖−𝑣𝑗)𝑐
𝑗=1

)

1
𝑞−1⁄

                                                                                                            (7) 

𝑣𝑗 =
∑ 𝑢𝑖𝑗

𝑞.𝑥𝑖
𝑘
𝑖=1

∑ 𝑢𝑖𝑗
𝑞𝑘

𝑖=1

                                                                                                                                      (8) 

𝐹𝑖 =
∑ 𝑢𝑖𝑗

𝑞.(𝑥𝑖−𝑣𝑗)
𝑇

.(𝑥𝑖−𝑣𝑗)𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑞𝑁

𝑖=1

                                                                                                                                             (9) 

𝐴𝑗 = 𝜆𝑖 . (𝑑𝑒𝑡(𝐹𝑖))
1

𝑛. 𝐹𝑖
−1                                                                                                                       (10) 

The algorithmic steps involved for GK is summarized in Algorithm 2. 

 

Algorithm 2: GK algorithm steps 

Input: MRI image, number of cluster centers, fuzzy exponent q, and stop criterion η 

Step 1: Initialization membership matrix 𝑈(𝜏) 

Step 2: Update cluster centers 𝑣(𝜏+1) using Eq. (8). 

Step 3: Update covariance matrix 𝐹(𝜏+1) using Eq. (9). 

Step 4: Update norm matrix 𝐴(𝜏+1) using Eq. (10). 

Step 5: Update membership matrix 𝑈(𝜏+1) using Eq. (7). 

Step 6: if max‖𝑈(𝜏+1) − 𝑈(𝜏)‖ ≤ 𝜂, then stop, otherwise set 𝜏 = 𝜏 + 1 and go 

Step 2 

Output: cluster centers, covariance matrix, and membership matrix. 

 

3. Proposed Algorithm 

The dissimilarity index in the presented FCM-based methods is not usually representative of 

compact clusters. Using the Euclidean distance in these approaches disregards the distance variation 

of data points within similar clusters. Therefore, there are challenges in image segmentation. To 

address these issues, this study proposes a robust GK (RGK) algorithm. As shown in Figure 1, a 

Wiener filter, combined with wavelet transform, is first applied to address the noise and INU 

problems. In the next step, motivated by the ideas of EnFCM [43] and FRFCM [44], we obtain the 

gray-level histogram of a reconstructed image. Then, the Mahalanobis distance is employed instead 

of the Euclidean distance. In the following step, the cluster centers, membership matrix, and positive 

definite symmetric matrix are updated via an iterative operation. Finally, a median filter is used to 

modify the membership partition matrix. By applying this method, we can achieve good 

segmentation results in grayscale MRI images, requiring less elapsed time.  
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Figure 1. Block-diagram of the proposed RGK algorithm for segmentation of brain tissues based on MRI images. 

3.1. Wiener Filter by Cooperating Wavelet Transform 

The existence of noise and INU affects the performance of the clustering process. On the other hand, 

the distribution properties of the data are also impacted by noise and INU. This situation leads to 

three problems: (1) the segmentation performance is inadequate for noisy images, (2) the number 

of iterations for the FCM and GK algorithms is larger for images corrupted by noise than for images 

that are uncorrupted, and (3) obtaining the image histogram for fast image segmentation is difficult 

under noisy and INU conditions [44]. To address these problems, this study introduces the WFWT 

approach as a preprocessing step for the GK algorithm before applying the clustering process to 

optimize the distribution characteristics of the data. We used three common methods, including 

mean, median, and Wiener filters, for image denoising. As shown in Figure 2, the Wiener filter 

demonstrates good performance for MRI image denoising under 9% noise and 40% INU conditions. 

The Wiener filter is applied to estimate the pixel value by using the local pixel average and the 

variance of the neighboring pixels [45]. In this process, the local mean value μ and the local variance 

value 𝜎2 for the pixel at the location (k, r) of the noisy image Ɲ are computed as follows: 

𝜇(𝑘, 𝑟) =
1

(2𝑀+1)(2𝑁+1)
∑ ∑ Ɲ(𝑘 + 𝑚, 𝑟 + 𝑛)𝑁

𝑛=−𝑁
𝑀
𝑚=−𝑀                                                                               (11) 

𝜎2(𝑘, 𝑟) =
1

(2𝑀+1)(2𝑁+1)
∑ ∑ Ɲ2(𝑘 + 𝑚, 𝑟 + 𝑛) − 𝜇2(𝑘 + 𝑚, 𝑟 + 𝑛)𝑁

𝑛=−𝑁
𝑀
𝑚=−𝑀                                                (12) 

where the dimensions of filter kernel are (2𝑀 + 1) × (2𝑁 + 1). 

Also, filtered image matrix Ɲ(𝑘, 𝑟) at the location (k, r) is obtained as follows: 

Ɲ(𝑘, 𝑟) = 𝜇(𝑘, 𝑟) +
𝜎2(𝑘,𝑟)

𝜎2(𝑘,𝑟)+𝜎Ɲ
2 (Ɲ(𝑘, 𝑟) − 𝜇(𝑘, 𝑟))                                                                      (13) 

where 𝜎Ɲ
2 is the variance of noisy image. If this criterion is not given, the average of all the local 

estimates of the variances is used as the variance of noisy image.  

Generally, motivated by the presented idea in [46], difference between the original image and 

denoised image (Ƒ) must be close zero. As shown in Figure 3(c), Ƒ is included the information that 

can be defined as follows: 

Ƒ = Ş + Ŋ                                                                                                                                          (14) 

where Ş and Ŋ remained information from original and noisy signals, respectively. 



108 A. Fahmi Jafargholkhanloo et al. / Computational Sciences and Engineering 4(1) (2024) 101-124  

 

Now, the challenge is to estimate the Ş and add it to input image. For this purpose, wavelet transform 

is applied. This process, can be defined as follows: 

𝒲Ƒ = 𝒲Ş + 𝒲Ŋ                                                                                                                                                            (15) 

where 𝒲Ş and 𝒲Ŋ are remained signal and noisy wavelet coefficients, respectively. 

 

Figure 2. Comparison of noise removal using different filters. (a): Original image. (b): Image corrupted by 9% noise 

and 40% INU. (c): Filtered image using mean filtering. (d): Filtered image using median filtering. (e): Filtered image 

using Wiener filtering. 

 

Figure 3. The steps of WFWT approach. (a): Noisy image. (b): Denoised image by applying Wiener filter. (c): 

Difference between the (a) and (b) steps (Ƒ). (d): Output of decomposition process with wavelet transform. (e): Fina 

reconstructed image by adding (d) step to (a) step. 

As show in Figure 3(d-e), by applying wavelet transform on Ƒ and extracting the Ş, we could to 

remove more noise. This process causes that the presented RGK algorithm to be more robust to 
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noise and INU conditions. In this study, Haar wavelet is used for decomposition process and soft-

thresholding is applied to threshold these wavelet coefficients. Also, decomposition process is 

performed to five levels. 

3.2. Robust Gustafson-Kessel 

Based on the obtained gray level histogram of the reconstructed image 𝜉𝑖 by WFWT (a weighted 

sum image based on original image and its local neighbor average), we proposed the cost function 

of RGK for image segmentation as follows: 

𝐽𝑅𝐺𝐾 = ∑ ∑ 𝛾𝑖 . 𝑢𝑖𝑗
𝑞 . (𝜉𝑖 − 𝑣𝑗)

𝑇
. 𝐴𝑗 . (𝜉𝑖 − 𝑣𝑗)𝑐

𝑗=1
𝑘
𝑖=1                                                                                      (16) 

where 𝛾𝑖 is the number of pixels with gray value equal to i (𝑖 = 1, 2, … , 𝑘). Generally, we have: 

∑ 𝛾𝑖
𝑘
𝑖=1 = 𝑁                                                                                                                                        (17) 

Utilizing the Lagrange multiplier technique, the aforementioned equation can be converted to an 

unconstrained optimization problem that minimizes the following cost function: 

𝐽𝐼𝐺𝐾 = ∑ ∑ 𝛾𝑖 . 𝑢𝑖𝑗
𝑞 . (𝜉𝑖 − 𝑣𝑗)

𝑇
. 𝐴𝑗. (𝜉𝑖 − 𝑣𝑗)𝑐

𝑗=1
𝑘
𝑖=1 − ∑ 𝜆𝑖(∑ 𝑢𝑖𝑗 − 1𝑐

𝑗=1 ) + ∑ 𝛽𝑗 . (𝑑𝑒𝑡(𝐴𝑗) − 𝜌𝑗)𝑐
𝑗=1

𝑘
𝑖=1                    (18) 

where λ is a Lagrange multiplier.  

The derivative of 𝐽𝑅𝐺𝐾 relative to 𝑢𝑖𝑗 and its equality to zero lead to: 

𝜕𝐽𝐼𝐺𝐾

𝜕𝑢𝑖𝑗
= 𝑞. 𝛾𝑖 . 𝑢𝑖𝑗

𝑞−1. (𝜉𝑖 − 𝑣𝑗)
𝑇

. 𝐴𝑗 . (𝜉𝑖 − 𝑣𝑗) − 𝜆𝑖 = 0                                                                                               (19) 

Eq. (19) is used to update the membership matrix: 

𝑢𝑖𝑗 = (
(𝜉𝑖−𝑣𝑟)𝑇.𝐴𝑟.(𝜉𝑖−𝑣𝑟)

∑ (𝜉𝑖−𝑣𝑗)
𝑇

.𝐴𝑗.(𝜉𝑖−𝑣𝑗)𝑐
𝑗=1

)

1
𝑞−1⁄

                                                                                                                               (20) 

To obtain the cluster centers, the partial differential equation of 𝐽𝑅𝐺𝐾 with respect to 𝑣𝑗  is computed 

and then equaled to zero: 

𝜕𝐽𝐼𝐺𝐾

𝜕𝑣𝑗
= −2 ∑ 𝛾𝑖 . 𝑢𝑖𝑗

𝑞 . (𝜉𝑖 − 𝑣𝑗). 𝐴𝑗
𝑘
𝑖=1 = 0                                                                                                (21)  

𝑣𝑗 =
∑ 𝛾𝑖.𝑢𝑖𝑗

𝑞.𝜉𝑖
𝑘
𝑖=1

∑ 𝛾𝑖.𝑢𝑖𝑗
𝑞𝑘

𝑖=1

                                                                                                                                                           (22) 

In the final step, the partial differential equation of 𝐽𝑅𝐺𝐾 with respect to 𝐴𝑗 is computed and then 

equaled to zero: 

𝜕𝐽𝐼𝐺𝐾

𝜕𝐴𝑗
= ∑ 𝛾𝑖 . 𝑢𝑖𝑗

𝑞 . (𝜉𝑖 − 𝑣𝑗)
𝑇

. (𝜉𝑖 − 𝑣𝑗) − ∑ (𝜆𝑖 .
𝜕

𝜕𝐴𝑗
(𝑑𝑒𝑡(𝐴𝑗)))𝑘

𝑖=1
𝑘
𝑖=1 = ∑ 𝛾𝑖 . 𝑢𝑖𝑗

𝑞 . (𝜉𝑖 − 𝑣𝑗)
𝑇

. (𝜉𝑖 − 𝑣𝑗) −𝑘
𝑖=1

∑ (𝜆𝑖 . 𝑢𝑖𝑗
𝑞 . 𝐴𝑗

−1)𝑘
𝑖=1 = 0                                                                                                                        (23) 

By solving Eq. (23), the corresponding solutions for 𝐴𝑗 is obtained as follows: 

𝐹𝑖 =
∑ 𝛾𝑖.𝑢𝑖𝑗

𝑞.(𝜉𝑖−𝑣𝑗)
𝑇

.(𝜉𝑖−𝑣𝑗)𝑘
𝑖=1

∑ 𝑢𝑖𝑗
𝑞𝑘

𝑖=1

                                                                                                                 (24) 

𝐴𝑗 = 𝜆𝑖 . (𝑑𝑒𝑡(𝐹𝑖))
1

𝑛. 𝐹𝑖
−1                                                                                                                       (25) 

Also, a membership function is improved by median filter to speed up the convergence and obtain 

a better membership matrix as follows: 

𝑢𝑖𝑗
𝑛𝑒𝑤 = 𝑚𝑒𝑑𝑓𝑖𝑙𝑡{𝑢𝑖𝑗}                                                                                                                         (26) 
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The algorithmic steps involved for RGK is summarized in Algorithm 3. 

 

Algorithm 3: RGK algorithm steps 

Input: MRI image, number of cluster centers, fuzzy exponent q, stop criterion η, and set window size. 

Step 1: Compute the new image 𝜉 using WFWT, and then compute the histogram of reconstructed image 𝜉. 

Step 2: Initialization membership matrix 𝑈(𝜏) 

Step 3: Update cluster centers 𝑣(𝜏+1) using Eq. (22). 

Step 4: Update covariance matrix 𝐹(𝜏+1) using Eq. (24). 

Step 5: Update norm matrix 𝐴(𝜏+1) using Eq. (25). 

Step 6: Update membership matrix 𝑈(𝜏+1) using Eq. (20). 

Step 7: if max‖𝑈(𝜏+1) − 𝑈(𝜏)‖ ≤ 𝜂, then stop, otherwise set 𝜏 = 𝜏 + 1 and go 

Step 3 

Step 8: Apply median filter to membership function. 

Output: cluster centers, covariance matrix, and membership matrix. 

 

4. Experimental Results 

In this section, we present the experimental results and report numerical findings on grayscale MRI 

images. We also provide segmentation comparisons between the proposed robust GK (RGK) 

algorithm and other existing algorithms available in the literature, including MICO [4], ARKFCM 

[18], FCMPSO [22], FCMWOA [23], BCIFCMSNI [28], fast and robust FCM (FRFCM) [44], and 

residual FCM (RFCM) [47]. The comparisons are conducted both visually and quantitatively. The 

experiments were performed on an Acer desktop with an Intel Core i7–9750H CPU, operating at a 

speed of 2.60 GHz, and equipped with 16 GB of RAM. 

To evaluate the performance of different algorithms for MRI image segmentation, we used three 

criteria: the Dice Similarity (DS), Jaccard Similarity (JS), and Contour Matching Score (CS) [48]. 

The DS index measures the degree of overlap between the segmented image and the ground truth 

(GT). The JS index computes the similarity between the two images, while the CS index evaluates 

the contour matching score between the segmented image and the GT. This index ranges from 0 to 

1, where a score of 1 indicates that the contours of the objects in the segmented image and the GT 

match perfectly. 

𝐷𝑆(𝐴, 𝐵) =  
2|𝐴⋂𝐵|

|𝐴|+|𝐵|
                                                                                                                               (27) 

𝐽𝑆(𝐴, 𝐵) =  
|𝐴⋂𝐵|

|𝐴⋃𝐵|
                                                                                                                                                           (28) 

𝐶𝑆 =  
2.𝑃𝑐.𝑅𝑐

𝑃𝑐+𝑅𝑐                                                                                                                                                                    (29) 

where 𝑃𝑐 and 𝑅𝑐 are precision and recall, respectively. 

4.1. Data Description 

To evaluate the performance of proposed RGK algorithm and other methods, experiments carried 

out on two brain MRI dataset, namely Brain Web simulated dataset [49] and GMICT dataset, 

respectively. This dataset consists of many simulated brain MRI images with the different noise 
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level and INU of resolution 1 mm with 181 × 217 × 181 dimensions with the given GT for different 

brain tissues. In this study, the segmentation process is performed for simulated brain MRI T1-

weighted (T1w) and T2-weighted (T2w) brain images having different levels of noise (3% and 9%) 

and INU (20%, and 40%) on slice 80 to 120. The second data consisted of 10 healthy individuals 

who underwent imaging using a 1.5-Tesla TOSHIBA Vantage scanner (Canon Medical Systems, 

Japan) at the Golghasht Medical Imaging Center in Tabriz (GMICT), Iran. The MRI scanning 

protocols followed standardized procedures, including T1-weighted sequence (repetition time (TR) 

= 540 ms, echo time (TE) = 15 ms, flip angle (FA) =70◦, field of view (FOV) = 230 × 230 mm2, 

number of slices = 18, acquisition matrix = [0, 256, 176, 0], voxel size = 0.45 × 0.45, slice thickness 

= 6 mm) , T2-FLAIR sequence (TR = 10000 ms, TE = 100 ms, , inversion time (TI) = 2500 ms, FA 

= 90◦, FOV = 230 × 230 mm2, number of slices = 20, acquisition matrix = [0, 256, 192, 0], voxel 

size = 0.9 × 0.9, slice thickness = 6 mm). A neuroradiologist carefully reviewed all patient scans. 

The study utilized T1 and T2-FLAIR images with voxel sizes of (0.45, 0.45, 6) and (0.9, 0.9, 6) 

millimeters, respectively. Ethical approval was obtained from the Tabriz University of Medical 

Sciences Research Ethics Committee, and written consent was obtained from all participants. In this 

study, we utilized the 100 T2-FLAIR and T1 images acquired horizontally with the voxel sizes of 

(0.9, 0.9, 6) and (0.45, 0.45, 6) millimeters, respectively. The Research Ethics Committee of Tabriz 

University of Medical Sciences granted ethical approval for this study. Additionally, written consent 

was obtained from all participants. Examples of the GMICT dataset are illustrated in Figure 4. 

Morphological operations were utilized for skull stripping. 

In recent years, there has been a noticeable rise in the number of neuroimaging studies conducted 

across multiple sites. However, a significant challenge arises from the fact that MRI intensities are 

acquired in arbitrary units. This often leads to the realization that the differences in MRI intensities 

between scanning parameters and studies are larger than the actual biological differences observed 

in the images. Consequently, normalizing intensity values becomes crucial for accurately analyzing 

changes in intensities over time and for segmenting different tissues and structures. 

The issue of intensity normalization has been extensively addressed in the existing literature, with 

various methods proposed [50]. These methods range from histogram-based approaches to 

statistical techniques such as min-max and z-score normalization. For example, [51] developed a 

method called White Stripe, which applies a z-score transformation to the entire brain using 

parameters estimated from a latent sub-distribution of normal-appearing white matter (NAWM). 

This method is particularly suitable for studies involving brain abnormalities, such as MS lesions, 

as it effectively standardizes the white matter across different subjects. However, it has been 

observed that residual variability across subjects still persists in gray matter (GM). While common 

intensity normalization methods successfully correct for global intensity shifts associated with 

scanner sites, substantial technical variation between scans remains, commonly referred to as the 

"scan effect" [52]. This technical variation can be attributed to various factors, including scanning 

parameters, scanner manufacturers, scanner field strength, and more. 

To develop a more applicable method, a few reliable references within images could facilitate 

thorough normalization. In this article, we use the remnants from applying a brain extraction method 

[53] to obtain reliable values that remain consistent across slices and scans of subjects, even over 

time. Given that we utilize T1 and T2-FLAIR images, it is well-established that the scalp and skull 

represent the brightest areas [54, 55]. Specifically, for the given image (I), a brain extraction method 

is initially applied, resulting in a remnant image (R) obtained by excluding I using the brain mask. 
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The averages of the first and last deciles of R’s intensities are calculated as the minimum and 

maximum values. Finally, image I is normalized based on these values using the min-max method 

as follows: 

𝑥′ =  
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                                                                                                                  (30) 

 

Figure 4. Examples of GMICT dataset. (the first row): Original normalized images. (the second row): Stripped skull 

images. 

4.2. Parameter Setting 

In the numerical implementation of RGK and other compared algorithms, we require to set constant 

parameters. In this study, three indispensable parameters including: the fuzzy exponent, the minimal 

error threshold, and the maximal number of iterations are set q=2, 𝜂 = 10−5 and 50 for RGK and 

other compared algorithms, respectively. In our proposed algorithm and those algorithms required, 

the window size used for Wiener filter is a window of size 3×3. Also, the used median filter for 

membership matrix filtering is a window 3×3. In MICO, degree of Legendre polynomials (P) is 

considered as P=3. In BCIFCMSNI based on reported parameters in [28], Sugeno’s negation 

parameter value is set as β = 1.7, spatial regularization parameter value α = 1.5, and neighbourhood 

size 3. In FCMPSO based on reported parameters in [22], the population size (n), inertia weight (ω), 

cognitive coefficient (𝑐1), and social coefficient (𝑐2) are set as n=60, ω=1, and 𝑐1 = 𝑐1 = 2, 

respectively. Also, in FCMWOA [23], population size has been considered as n=12. Except the 

mentioned indispensable parameters and the number of cluster center, there is no other parameters 

for ARKFCM. In FRFCM, the structure element (SE) used for morphological reconstruction (MR) 

is a square of size 3×3. In RFCM based on reported parameters in [47], to control the decreasing 

rate of weighting matrix, the ξ parameter is considered ξ=0.0008. The standard deviation of image 

data is related to noise levels in RFCM. Therefore, the β parameter is set in virtue of the standard 

deviation of each channel. 

4.2.3 Experimental Results on Brain Web Dataset 

The segmentation performance is evaluated for simulated T1w and T2w brain MRI images with 

varying levels of noise (3% and 9%) and INU (20% and 40%) on slices 80 to 120. Figures 5-6 

illustrate the qualitative results obtained from a simulated MRI image (Brain Web) corrupted with 

9% noise and 40% INU on axial slice 90 for T1w and T2w, respectively. Tables 1-3 show the 

performance of different algorithms in the segmentation of WM, GM, and CSF on T1w images, 
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measured in terms of average DS, JS, and CS, respectively. Tables 4-6 show the performance of 

different algorithms in the segmentation of WM, GM, and CSF on T2w images, measured in terms 

of average DS, JS, and CS, respectively. Additionally, the average DS values for WM, GM, and 

CSF across slices 80 to 120 of the simulated Brain Web MRI image, with 9% noise and 40% INU, 

are depicted in Figure 7. The following observations can be made from the obtained results: 

  

 
Figure 5. Qualitative segmentation performance on a simulated MRI image (Brain Web, T1w Image) with 9% noise 

and 40% INU. (a): Input image. (b): GT image. (c): MICO result. (d): ARKFCM result. (e): FCMPSO result. (f): 

FCMWOA result. (g): BCIFCMSNI result. (h): FRFCM result. (i): RFCM result. (j): Proposed RGK result. 

Table 1. Comparison of the proposed RGK algorithm with other methods for WM segmentation on the Brain Web 

simulated dataset (T1w Images). 

Criteria 

 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

MICO  93.30 94.24 84.06 84.55 87.86 89.61 72.76 73.50 95.20 97.15 77.34 78.26 

ARKFCM  94.96 92.91 93.11 90.63 91.90 86.88 87.19 82.97 98.57 93.55 94.27 89.80 

FCMPSO  79.62 84.80 62.97 71.14 72.48 77.81 51.15 59.54 90.96 91.34 73.11 75.79 

FCMWOA  91.76 88.65 80.35 82.20 85.51 81.55 69.31 70.88 92.52 87.27 76.92 77.76 

BCIFCMSNI  88.89 84.87 85.76 85.25 81.91 76.08 75.44 74.97 80.09 69.95 82.13 78.66 

FRFCM  94.17 94.26 93.52 91.79 91.75 89.18 87.88 85.19 97.93 95.48 96.66 93.25 

RFCM  94.36 93.19 93.79 92.17 90.63 87.29 88.84 85.83 97.26 94.14 97.05 93.41 

RGK 96.94 95.37 94.15 92.88 93.23 90.38 89.12 86.30 98.63 97.15 97.97 95.33 
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Table 2. Comparison of the proposed RGK algorithm with other methods for GM segmentation on the Brain Web 

simulated dataset (T1w Images). 

Criteria 

 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

MICO  87.52 89.10 75.04 75.69 78.30 80.61 60.33 61.20 97.60 97.36 91.90 92.20 

ARKFCM  84.38 78.00 77.57 74.35 75.05 66.57 65.63 61.22 97.00 95.19 95.69 94.21 

FCMPSO  67.34 67.86 59.15 58.82 52.28 57.22 45.45 44.66 92.63 91.64 88.40 88.22 

FCMWOA  78.84 76.73 67.94 68.44 68.44 65.35 53.36 53.65 95.67 93.54 91.58 91.77 

BCIFCMSNI  68.95 66.74 69.81 67.96 61.00 58.92 55.58 55.00 89.79 84.78 93.94 91.18 

FRFCM  89.51 88.22 86.81 85.21 81.09 78.98 76.74 74.12 94.86 93.75 94.70 93.11 

RFCM  89.27 87.13 88.25 86.01 80.66 77.21 78.80 75.22 95.04 94.08 95.41 94.19 

RGK 91.23 89.66 87.81 86.72 82.26 80.68 79.32 76.31 96.87 96.80 97.01 96.17 

 

Table 3. Comparison of the proposed RGK algorithm with other methods for CSF segmentation on the Brain Web 

simulated dataset (T1w Images). 

Criteria 

 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

MICO  87.44 88.44 82.70 83.37 77.89 79.44 70.70 71.67 97.63 98.35 95.13 95.07 

ARKFCM  67.08 64.95 63.10 65.98 56.76 53.84 52.12 53.59 93.07 91.24 90.41 90.50 

FCMPSO  72.41 80.39 65.03 65.66 62.27 71.56 51.22 52.37 92.62 94.78 88.33 88.94 

FCMWOA  75.57 74.22 67.34 68.01 62.76 61.36 52.62 52.80 92.46 91.45 89.35 89.80 

BCIFCMSNI  57.04 47.29 52.09 64.26 49.83 51.52 44.07 58.89 73.80 59.06 74.64 76.33 

FRFCM  82.52 83.69 82.15 82.13 70.43 72.11 70.10 70.06 87.97 88.54 88.51 89.19 

RFCM  83.73 83.62 83.80 83.08 72.07 71.92 76.26 71.18 89.00 89.52 89.98 91.02 

RGK 85.59 84.66 84.53 84.63 74.61 74.72 73.91 73.17 94.52 94.40 95.13 95.15 

 

Table 4. Comparison of the proposed RGK algorithm with other methods for WM segmentation on the Brain Web 

simulated dataset (T2w Images). 

Criteria 

 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

MICO  87.37 85.63 71.58 72.83 77.82 76.50 56.02 57.50 84.92 86.20 72.24 72.19 

ARKFCM  46.84 50.61 62.09 41.69 43.35 46.19 51.40 32.08 79.29 82.57 79.16 74.29 

FCMPSO  67.18 73.62 58.46 62.56 54.97 60.63 43.67 47.87 64.39 61.15 65.83 67.65 

FCMWOA  54.11 46.92 50.26 57.78 45.18 38.68 36.17 42.70 51.30 43.12 63.32 67.62 

BCIFCMSNI  30.98 40.05 52.14 53.10 28.26 36.25 41.07 41.62 32.11 41.32 56.07 57.72 

FRFCM  89.68 87.82 83.83 82.82 81.54 78.58 72.40 70.95 92.47 87.33 78.66 74.94 

RFCM  92.05 91.03 46.85 44.60 85.34 83.59 40.27 38.20 83.97 82.91 43.53 42.03 

RGK 93.63 92.44 88.30 87.91 88.11 86.02 79.12 78.50 97.65 96.27 88.62 87.71 
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Table 5. Comparison of the proposed RGK algorithm with other methods for GM segmentation on the Brain Web 

simulated dataset (T2w Images). 

Criteria 

 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

MICO  78.33 78.27 64.40 64.72 64.59 64.61 47.64 47.94 95.14 95.51 86.29 86.99 

ARKFCM  52.11 53.83 63.30 47.79 43.09 44.10 48.45 34.54 84.60 85.54 90.99 85.67 

FCMPSO  47.51 43.62 46.26 52.55 36.63 33.85 32.37 37.56 84.70 82.61 84.72 86.66 

FCMWOA  59.13 53.45 45.71 59.10 46.34 40.42 32.80 43.06 83.00 82.29 77.24 83.62 

BCIFCMSNI  68.52 72.03 65.56 65.99 53.21 57.55 49.04 49.48 84.19 86.73 87.01 85.88 

FRFCM  78.31 74.57 66.89 63.70 64.94 60.36 50.72 47.60 94.07 93.27 91.44 90.10 

RFCM  64.23 65.47 30.06 31.91 47.51 48.80 18.33 19.66 92.69 92.95 81.76 83.26 

RGK 86.91 85.33 80.49 79.83 77.07 74.68 67.39 66.51 97.66 97.54 95.12 94.94 

 

Table 6. Comparison of the proposed RGK algorithm with other methods for CSF segmentation on the Brain Web 

simulated dataset (T2w Images). 

Criteria 

 

 

 

        Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

MICO  86.49 87.31 83.39 83.81 77.85 79.15 71.77 72.35 95.26 98.12 94.14 94.73 

ARKFCM  74.08 74.79 79.20 74.10 60.23 61.26 65.97 59.98 85.31 85.58 92.46 87.03 

FCMPSO  64.54 69.16 64.86 55.02 54.51 58.50 54.50 44.45 90.63 90.76 90.31 87.51 

FCMWOA  82.58 80.86 66.89 80.18 72.47 70.76 56.05 68.51 93.26 91.35 79.69 92.62 

BCIFCMSNI  88.05 90.91 85.66 86.29 80.14 83.54 75.57 74.49 95.31 98.79 96.66 96.11 

FRFCM  77.84 78.39 78.02 76.67 64.14 64.93 64.31 62.70 78.58 79.65 79.00 76.83 

RFCM  47.11 48.01 39.60 41.35 31.13 31.99 24.87 26.29 72.93 67.32 59.51 60.33 

RGK 88.35 88.08 85.81 86.62 78.66 77.76 75.74 75.47 95.47 96.23 94.72 96.45 

 

(1) Based on Table 1 and Table 4, the proposed RGK algorithm demonstrates the best performance 

for the segmentation of white matter (WM) on T1w and T2w images compared to other 

algorithms. The CS criterion indicates that the MICO algorithm lacks appropriate efficiency in 

recognizing the boundaries of WM under 9% noise and INU levels of 20% and 40% on T1w 

images. This algorithm has not an appropriate performance in T2w images. The ARKFCM 

algorithm performs well for WM segmentation; however, Figure 7 illustrates that this algorithm 

is not suitable for slices numbered 99–104. Population-based approaches, such as FCMPSO and 

FCMWOA, show suitable performance under 9% noise and high levels of INU (20% and 40%). 

As shown in Figure 5(e), FCMPSO frequently mislabels the background class as the gray matter 

(GM) class. Figure 7 indicates that FCMPSO is not appropriate for slices numbered 90–109, 

whereas FCMWOA performs better than FCMPSO for these slices. Furthermore, FCMWOA 

requires fewer fine-tuning parameters than FCMPSO, which makes PSO an unsuitable candidate 

for optimizing the FCM algorithm. Based on Tables 4-6, population-based approaches have the 

worst performance in segmentation of MRI tissues on T2w images. BCIFCMSNI fails to correct 

the bias field for slices numbered 109–120. Additionally, based on the obtained JS criterion in 

Table 1, this algorithm is unable to effectively segment WM. Under varying conditions of noise 

(3% and 9%) and INU (20% and 40%), three algorithms—FRFCM, RFCM, and RGK—exhibit 
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appropriate efficiency for WM segmentation. Based on Table 4, the value of evaluation criteria 

decreases in WM segmentation on T2w images. Also, there is a difference of approximately 

10% between proposed RGK algorithm and FRFCM in all parameters. These results the 

generalizability of the proposed algorithm to T2w MRI images. The use of the WFWT approach 

instead of morphological reconstruction (MR) has contributed to the RGK algorithm being more 

robust than both FRFCM and RFCM. According to Table 1, the CS criterion demonstrates that 

RGK preserves edges well, resulting in proper contour matching in WM segmentation. 

Moreover, Figure 7 illustrates that the proposed RGK algorithm performs effectively across all 

slices.  

(2) As demonstrated in Table 2 and Table5, the proposed RGK algorithm is effective for gray matter 

(GM) segmentation under various noise and INU levels on T1w and T2w images, showcasing 

the best performance compared to other algorithms based on the JS criterion. Notably, the RGK 

algorithm is both robust and accurate for GM segmentation. In contrast, the MICO algorithm 

exhibits poor performance for GM segmentation according to the DS and JS criteria, making it 

less robust to noise and varying INU levels. As illustrated in Figure 6(c), this algorithm 

frequently mislabels the WM class as the GM class and has not a proper performance in 

segmentation of brain tissues on T2w images. However, based on the CS criterion, MICO 

performs well under 3% noise and high INU levels, indicating that it can identify GM boundaries 

with greater detail. Despite this, MICO struggles with high noise levels (9%) and does not 

segment GM effectively, whereas the RGK algorithm remains robust even with 9% noise and 

high INU levels (20% and 40%) on both T1w and T2w images. RGK achieves an average CS 

value of 97% (for T1w images) and 95% (for T2w images) for 9% noise and 20% INU, 

demonstrating its superior performance in GM segmentation. It also exhibits the highest CS 

value under 9% noise and 40% INU. The CS criterion results in Table 2 further indicate that 

RGK effectively preserves edges with more detail. Due to incorrect labeling of the background 

class as the GM class, FCMPSO shows the worst performance for GM segmentation across 

different noise and INU conditions. Although FCMWOA demonstrates better efficiency than 

FCMPSO under low noise conditions, it is not robust under high noise levels. Based on Figure 

6(e and f), in segmentation of brain tissues based on T2w images, FCMPSO algorithm 

frequently mislabels the WM class as the GM class and FCMWOA mislabels the GM class as 

the WM class. As shown in Figure 7, BCIFCMSNI performs well on slices 80–85 and 92–102 

but is not a suitable candidate for other slices, which adversely affects its performance for GM 

segmentation. Also, this algorithm has not a suitable performance in GM tissue segmentation 

on T2w images. Overall, RGK outperforms its peers in terms of the DS criterion. As illustrated 

in Figure 5 and Figure 6, the proposed RGK algorithm segments GM pixels with greater detail 

on both T1w and T2w images.  

(3) The CSF region consists of compact and small clusters; thus, FCM-based approaches do not 

perform well using Euclidean distance. As illustrated in Figure 5(j), both FRFCM and RFCM 

incorrectly label CSF and GM pixels. Table 3 shows that FCM-based methods are not suitable 

for CSF segmentation, particularly when the clusters in the data differ in size and shape. This 

underscores the effectiveness of the proposed RGK algorithm, which is adept at detecting 

ellipsoidal cloud clusters with varying sizes and orientations. MICO, being a contour-based 

approach, also demonstrates suitability for the segmentation of compact and small clusters. 

Table 3 reveals that MICO and RGK achieve similar results in CSF segmentation across 

different noise and INU conditions. However, as indicated in Figure 7, MICO exhibits 



 A. Fahmi Jafargholkhanloo et al. / Computational Sciences and Engineering 4(1) (2024) 101-124  117 

 

suboptimal performance for slices 100-110, while the proposed RGK algorithm remains stable 

across all slices. The obtained experimental results on both T1w and T2w images illustrate the 

generalizability of the proposed RGK algorithm for CSF region segmentation. 

 
Figure 6. Qualitative segmentation performance on a simulated MRI image (Brain Web, T2-weighted Image) with 9% 

noise and 40% INU. (a): Input image. (b): GT image. (c): MICO result. (d): ARKFCM result. (e): FCMPSO result. (f): 

FCMWOA result. (g): BCIFCMSNI result. (h): FRFCM result. (i): RFCM result. (j): Proposed RGK result. 

The average running times for the various algorithms are presented in Table 7. These results indicate 

that population-based algorithms, such as FCMPSO and FCMWOA, are time-consuming. Contour-

based methods like MICO are also more time-intensive due to their reliance on edge-stopping 

functions that depend on the image gradient. In contrast, FRFCM and RFCM exhibit the lowest 

execution times among the algorithms assessed. However, the main drawback of these algorithms 

is their inefficacy when clusters in the data are not of the same size and shape. 

 

Table 7. Comparison of average execution times of different algorithms on the Brain Web dataset (in seconds, 9% 

noise and 40% INU). 

Brain Image 

Size 

MICO ARKFCM FCMPSO FCMWOA BCIFCMSNI FRFCM RFCM RGK 

181×217 4.17 1.87 4.15 3.05 2.85 0.05 0.62 2.15 

 

To further compare and analyze the proposed method, it is beneficial to explore deep learning 

approaches as well. In recent years, these methods have demonstrated their unique capabilities in 

tasks such as medical image segmentation [56]. The foundation of most of these methods is based 

on convolutional neural networks (CNNs). U-Net networks, for instance, are a highly successful 
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example of CNNs in medical image segmentation. In this study, we utilize a new, well-established 

model known as SynthSeg as a representative of deep learning-based methods for comparison and 

performance evaluation. SynthSeg is a convolutional neural network designed for brain MRI 

segmentation across different contrasts and resolutions without requiring retraining. Traditional 

CNN models often struggle with generalization due to variations in factors such as resolution and 

contrast. To address this challenge, SynthSeg employs a domain randomization strategy during 

training, where synthetic data is generated based on segmented models. By fully randomizing the 

contrast and resolution of these synthetic images, SynthSeg achieves a high level of robustness, 

allowing it to effectively segment real scans from diverse domains. This method enables the analysis 

of large and heterogeneous clinical datasets. SynthSeg requires only segmentation labels and does 

not rely on real images. This feature allows the model to learn from labels obtained through 

automated methods across different populations, making it resistant to various morphological 

variations. Evaluations on 5,000 scans across six modalities and ten different resolutions have 

shown that SynthSeg outperforms traditional supervised CNNs, advanced domain adaptation 

methods, and Bayesian segmentation approaches [57]. Furthermore, SynthSeg has also been 

successfully applied to cardiac MRI and CT scan processing, demonstrating its high adaptability. 

The enhanced version of this model offers more precise segmentation, cortical parcellation, 

intracranial volume estimation, and automatic error detection. This version has been optimized for 

processing heterogeneous clinical data and has demonstrated successful performance in large-scale 

studies, such as aging trend analysis on 14,000 scans [58]. The performance of proposed RGK 

algorithm has been compared with SynthSeg approach in segmentation of brain tissues on the Brain 

Web simulated dataset (T1w and T2w Images) in Table 8. The experimental results indicate the 

performance of proposed algorithm is close to SynthSeg method and in some cases even better than 

the SynthSeg method. 

 

  

Figure 7. Comparison of the proposed RGK algorithm and other methods in average terms of DS criterion for WM, 

GM, and CSF on different slice of the Brain Web MRI images with 9% noise and 40% INU. 
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Table 8. Comparison of the proposed RGK algorithm with SynthSeg method for segmentation of brain tissues on the 

Brain Web simulated dataset (T1w and T2w Images). 

White Matter  

Criteria 

 

 

 

        Methods 

DS (%) ↑ (T1w) JS (%) ↑ (T1w) CS (%) ↑ (T1w) 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

 SynthSeg 94.71 94.73 93.33 93.45 90.04 90.08 87.59 87.80 97.74 97.73 96.53 96.77 

RGK  96.94 95.37 94.15 92.88 93.23 90.38 89.12 86.30 98.63 97.15 97.97 95.33 

Criteria 

 

 

 

        Methods 

DS (%) ↑ (T2w) JS (%) ↑ (T2w) CS (%) ↑ (T2w) 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

SynthSeg 92.93 92.95 88.47 88.87 86.91 86.93 79.45 80.09 96.38 96.41 88.67 89.57 

RGK 93.63 92.44 88.30 87.91 88.11 86.02 79.12 78.50 97.65 96.27 88.62 87.71 

Grey Matter  

Criteria 

 

 

 

        Methods 

DS (%) ↑ (T1w) JS (%) ↑ (T1w) CS (%) ↑ (T1w) 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

SynthSeg  88.40 88.39 86.90 87.10 79.27 79.24 76.87 77.20 96.36 96.35 95.58 95.68 

RGK  91.23 89.66 87.81 86.72 82.26 80.68 79.32 76.31 96.87 96.80 97.01 96.17 

Criteria 

 

 

 

        Methods 

DS (%) ↑ (T2w) JS (%) ↑ (T2w) CS (%) ↑ (T2w) 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

SynthSeg 87.59 87.58 81.33 81.97 77.98 77.95 68.59 69.52 96.00 96.01 92.19 92.61 

RGK 86.91 85.33 80.49 79.83 77.07 74.68 67.39 66.51 97.66 97.54 95.12 94.94 

Cerebrospinal Fluid  

Criteria 

 

 

 

        Methods 

DS (%) ↑ (T1w) JS (%) ↑ (T1w) CS (%) ↑ (T1w) 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

SynthSeg  79.04 78.95 79.68 79.72 65.39 65.28 66.29 66.33 95.02 94.98 94.72 94.72 

RGK  85.59 84.66 84.53 84.63 74.61 74.72 73.91 73.17 94.52 94.40 95.13 95.15 

Criteria 

 

 

 

        Methods 

DS (%) ↑ (T2w) JS (%) ↑ (T2w) CS (%) ↑ (T2w) 

3% Noise 9% Noise 3% Noise 9% Noise 3% Noise 9% Noise 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

20% 

INU 

40% 

INU 

SynthSeg 83.63 83.60 82.12 82.62 71.91 71.88 69.73 70.47 95.99 95.94 95.59 95.86 

RGK 88.35 88.08 85.81 86.62 78.66 77.76 75.74 75.47 95.47 96.23 94.72 96.45 

4.4. Experimental Results on GMICT Dataset 

(1) In this section, we evaluate the segmentation performance of GMICT MRI T1w brain images. 

Figure 8 presents the qualitative results obtained from a GMICT image. Table 9 summarizes 

the performance of various algorithms in segmenting WM, GM, and CSF based on average 

values of the DS, JS, and CS criteria. Additionally, Figure 9 depicts a boxplot illustrating the 

average DS criterion values for WM, GM, and CSF. The following observations can be drawn 

from the results obtained:  Table 9 manifests that the proposed RGK algorithm has the highest 
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values in terms of DS, JS, and CS criteria for segmentation of tissues compared to other 

algorithms. 

(2) Population-based approaches (FCMPSO and FCMWOA) have the worst performance. Based 

on Figure 8(i), in FCMPSO, the WM class is incorrectly labelled as GM class, usually. Also, 

as shown in Figure 8(f), in FCMWOA, the CSF class is incorrectly labelled as back-ground 

class, usually. 

(3) As shown in Figure 8(g), BCIFCMSNI doesn’t efficiently work in some GMICT dataset and 

identify GM pixels as WM pixels, incorrectly. This algorithm has the lowest value in term of 

CS criterion. It reveals that this algorithm cannot recognize the boundary with more details. 

(4) FRFCM, RFCM, and RGK algorithms have an appropriate performance for segmentation of 

tissues on GMICT dataset. CSF plays a vital role in clearing metabolic waste from the human 

brain. Therefore, accurate segmentation of CSF is a valuable task. CSF is usually considered 

as a compact and small cluster. Table 9 illustrates that FCM-based methods are not a proper 

tool for this purpose. RGK by using the Mahalanobis distance instead of Euclidean distance 

is a suitable candidate for clustering the compact data. 

(5) Figure 9 depicts that the proposed RGK algorithm has higher segmentation accuracy for 

tissues compared to other algorithms. It is valuable that the RGK has the lowest standard 

deviation value. 

(6) The average running times for different algorithms has been demonstrated in Table 10. These 

results reveal that the population-based algorithms (FCMPSO and FCMWOA) are time-

consuming. Contour-based methods such as MICO take more time. FRFCM and RGK 

algorithms have the lowest execution times compared to other algorithms. 

 

Table 9. Comparison of the proposed RGK algorithm with other methods for MRI image segmentation on GMICT 

dataset. 

Criteria 

 

        

Methods 

DS (%) ↑ JS (%) ↑ CS (%) ↑ 

WM GM CSF WM GM CSF WM GM CSF 

MICO  80.41 62.51 76.22 68.69 46.16 62.63 75.71 89.69 91.62 

ARKFCM  83.31 71.43 70.68 75.72 60.95 59.11 81.33 91.77 91.41 

FCMPSO  84.14 67.89 62.74 75.27 56.01 51.15 79.74 89.05 84.34 

FCMWOA  72.63 35.23 39.26 61.01 37.13 38.37 49.32 69.71 65.99 

BCIFCMSNI  78.23 72.89 76.81 74.69 61.13 60.12 70.78 81.13 70.15 

FRFCM  88.20 81.46 81.63 81.39 70.34 70.49 86.63 90.66 91.12 

RFCM  88.10 80.39 79.09 81.21 68.58 66.35 86.15 90.22 88.25 

RGK 90.24 82.16 84.89 82.70 71.40 74.62 88.95 92.77 94.18 

 

Table 10. Comparison of average execution times of different algorithms on GMICT dataset (in seconds). 

Brain Image 

Size 

MICO ARKFCM FCMPSO FCMWOA BCIFCMSNI FRFCM RFCM RGK 

256×256 5.10 2.7 7.1 5.2 3.4 0.03 1.33 0.8 
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Figure 8. Qualitative segmentation performance on GMICT image. (a): Input image. (b): GT image. (c): MICO result. 

(d): ARKFCM result. i: FCMPSO result. (f): FCMWOA result. (g): BCIFCMSNI result. (h): FRFCM result. (i): RFCM 

result. (j): Proposed RGK result. 

 
Figure 9. Boxplot for comparison of the proposed RGK algorithm and other methods in average terms of DS criterion 

for WM, GM, and CSF on GMICT dataset. 

5. Conclusion and Future Works 

FCM-based methods rely on the Euclidean distance for clustering, which fails to account for 

variations in the distances of data points within similar and compact clusters. This limitation is 
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especially problematic for cerebrospinal fluid (CSF), which plays a crucial role in clearing metabolic 

waste from the brain and often appears as a small, compact cluster. The use of the Euclidean distance 

can cause this cluster to be misclassified. Additionally, noise and INU significantly impact the 

clustering process, increasing the number of iterations required for FCM and GK algorithms when 

segmenting noisy images. Under these conditions, obtaining a clear image histogram for fast 

segmentation becomes challenging. To address the mentioned problems, this study proposed a 

robust Gustafson-Kessel (RGK) algorithm for segmenting brain tissues based on T1-weighted MRI 

images. The RGK algorithm avoids the need to compute distances between pixels within local 

spatial neighborhoods. At first, a Wiener filter combined with WFWT was applied to improve image 

quality under different noise and INU levels while preserving object edges. In the second step, the 

image histogram was used for fast segmentation, followed by clustering using the Mahalanobis 

distance instead of the Euclidean distance. In the final step, RGK incorporated membership matrix 

filtering to exploit local spatial constraints. The proposed algorithm is efficiently fast and does not 

require parameter tuning. It was evaluated on two datasets: the BrainWeb simulated dataset and 

MRI scans from 10 healthy individuals at the Golghasht Medical Imaging Center in Tabriz 

(GMICT), Iran. For the GMICT dataset, the remnants of brain extraction were used to obtain 

consistent values across slices and scans over time. Experimental results showed that the RGK 

algorithm is accurate for segmenting tissues and robust to various noise and INU levels, delivering 

reliable performance across all slices. The proposed algorithm can be applied on other medical 

images such as C.T, X-ray and ultrasound images. In medical image analysis such as C.T, the 

number of cluster centers is experimentally set. Therefore, in future work, it would be beneficial to 

develop a GK algorithm that can automatically determine the number of clusters. Additionally, 

incorporating a bias field term into the RGK cost function could further improve the algorithm's 

performance. 
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