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 In this paper, a numerical method based on finite differences is 

presented for numerically solving a fractional integral-differential 

equation of variable order with Prabhakar integral and Caputo-

Prabhakkar fractional derivative. Using the proposed method, an 

approximate solution of the desired equation is obtained from solving a 

system of linear equations. The stability of the method is investigated 

and it is shown that the proposed method is stable under certain 

conditions. Three examples are presented to demonstrate the efficiency 

and accuracy of the proposed method. 
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1. Introduction  

In general, differential equations, including integral equations, integral-differential equations, 

ordinary and partial differential equations, and others, arise from mathematical modeling of real-

world problems. We generally have difficulty in obtaining solutions to these types of equations 

using analytical methods. Therefore, we seek approximate and numerical methods to solve these 

equations. Research and studies in the theoretical and numerical fields have witnessed many 

developments in recent decades [1-4]. Most mathematical formulations of physical phenomena 

include integral-differential equations, which arise in the properties of viscoelasticity [5], risk 

management models [6], biology [7], and cosmological physics [8]. In the last few decades, by 

searching through published articles in the fields of mathematical sciences and engineering, we 

have come across more or less the topics of fractional calculus, integral-differential equations of 

fractional order, differential equations with fractional derivatives, and similar concepts of this type 

of topics in fractional calculus [9-13]. These articles and books exist in both theoretical and 

applied fields and have devoted a significant share of research to themselves. Some authors 
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introduced fractional derivatives and integrals as a generalization of classical concepts and topics 

and have tried to prove their claim. All these cases indicate that these topics have a good position 

in mathematical sciences, mathematical physics, and even engineering. In recent years, fractional 

calculus has made great progress in theoretical and applied fields, which has helped to overcome 

the shortcomings of integer calculus. Applications of fractional calculus include the study of fluid 

flow in porous materials, anomalous propagation theory, sound wave propagation in elastic and 

viscous materials, mechanics of motion of bodies in similar structures, signal processing, financial 

theory, and electrical conductivity in biological devices. Fractional derivatives have several 

different definitions, two of the most important of which are the Riemann-Liouville fractional 

derivative and the Caputo fractional derivative. There is a close relationship between the 

Riemann-Liouville fractional derivative and the Caputo fractional derivative in that the Riemann-

Liouville fractional derivative can be converted to the Caputo fractional derivative under certain 

functional assumptions [14-16]. In fractional differential equations with partial derivatives, 

fractional time derivatives are usually defined using the Caputo derivatives. This is because the 

definition of the Riemann-Liouville fractional derivative requires initial conditions with limit 

values of the Riemann-Liouville fractional derivative at the origin of time, which do not have very 

clear physical meanings, while the initial conditions for the Caputo fractional derivative are the 

same as those for differential equations of the right order. 

Some modeling of physics and engineering problems and phenomena will lead to variable-order 

fractional differential equations [17-19]. In recent years, the application of ordinary variable-order 

fractional differential equations and variable-order fractional partial differential equations in many 

fields has increased significantly, and therefore the analysis and solution of these equations is also 

one of the concerns of researchers. The subject of variable-order fractional differential calculus is 

actually a generalization of the derivative calculation from natural orders to arbitrary orders. 

Variable-order fractional differential calculus, due to its many applications in various fields, has 

attracted the attention of many researchers in the last decade. Variable-order fractional derivatives 

are a very good tool for describing the memory and hereditary properties of many materials and 

processes. This is the fundamental advantage of variable-order fractional derivatives compared to 

ordinary derivatives. The properties of variable-order fractional derivatives are also used in 

modeling the mechanical and electrical properties of materials in many fields. Variable-order 

fractional derivatives appear in many physical problems such as frequency-dependent damping 

behavior in materials, the motion of large thin plates in Newtonian fluids, and control problems in 

dynamical systems [20-22]. Given the many applications of variable-order fractional derivatives, 

the solution of variable-order fractional differential equations is of great importance. It is usually 

not possible to obtain exact solutions to variable-order fractional differential equations, and unlike 

integer-order differential equations, whose numerical solution has been a fundamental and 

important topic in numerical and computational mathematics for a long time, there are not many 

numerical methods for solving variable-order fractional differential equations in general. Usually, 

numerical methods used to solve functional equations are divided into two categories. The first 

group is local methods, in which the domain of the problem definition is first divided into a finite 

number of subdomains, then in each subdomain the solution to the problem is approximated by 

appropriate basis functions. The finite difference method and the finite element method are among 

the most important local methods. The finite difference method has good efficiency and accuracy 

in solving problems with simple domains. The finite element method is also suitable for solving 

problems whose domains of definition have complex geometric shapes. The second group is 
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comprehensive methods, which approximate the solution to the problems throughout the domain 

as a collection of appropriate basis functions. Comprehensive methods are usually used to solve 

problems that have a simple domain structure and shape and require more accuracy. Of course, 

numerical methods have been proposed for solving linear multivariable fractional differential 

equations, but there are still not many methods available for solving nonlinear multivariable 

fractional differential equations. Among them, the implicit Euler numerical method [23], the 

spline numerical method [24], the Chepishev colocality method of the sixth kind [25], the implicit 

radial basis function numerical method [26], the numerical method based on matrix operators 

including Lagrange polynomials [27], the finite difference method [28], and the Legendre wavelet 

numerical method [29] can be mentioned. 

Nowadays, the high-value fractional operator with a non-singular kernel of the Mettig-Leffler 

function has attracted increasing attention in real-world problems due to its applications in 

mathematical sciences and engineering. For example, Gara [30], Kielbas [31], Perbahkar [32], the 

authors generalized the Riemann-Liouville (or Caputo) integral and derivative to the high-value 

fractional integral and derivative including the generalized Mettig-Leffler function in their kernels. 

This type of integral and fractional derivative can adequately describe the relaxation time of the 

unusual Havriliak-Ngami models in the field of dielectric materials [33-35]. Other applications of 

this type of integral and derivative include the time evolution of polarization processes [36], the 

fractional Poisson process [30], the Maxwell model in viscoelasticity [37], and the sedimentation 

of particles in porous media [38]. 

In this paper, a finite difference numerical method is used to numerically solve a variable 

fractional order integral-differential equation such as 

γ

ρ μ ω1 2( ) , ( ), ,0

1 2

( ) ( ) ( ),

0 ( ) 1,0 ( ) 1,

C
t t

D u t u t f t

t t
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Under the initial condition 

0(0)u u                                                                           (2) 

is discussed. In relation (1), 𝐷𝐶
𝜌,𝜇1(𝑡),𝜔,𝟎

+
𝛾

 the Caputo-multiplicative fractional operator is of 

variable fractional order 1( )t  and ℑ𝜌,𝜇2(𝑡),𝜔,0+
𝛾

 the multiplicative fractional operator is of variable 

fractional order 2( )t . For this purpose, the paper is organized as follows. In Section 2, we 

present important concepts of variable-order integrals and derivatives. In Section 3, we present a 

finite difference method for solving variable-order integral-differential equations. Also, in this 

section, the stability of the numerical method is discussed. In Section 4, the proposed method is 

applied to two examples. Finally, in Section 5, we show the agreement of the presented theorems 

with the numerical results by solving two examples using the proposed method. 

2. Basic concepts in fractional calculus 

This section defines the integral and derivative of a multivariable fraction of the order of the 

variable, which will be used in the following sections. 
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Definition 1. Let  1L (0, b)u , 0<t<b + , and μ( )t be real numbers. In this case, the 

integral of a multivariable fraction of the order of the variable is defined as follows [32]: 

γ γμ ρ
ρ μρ μ ω

ω

μ ρ

( )( )
,

( ) (0,1], 0,

tt

t

+

t
-1

,, , , 0
0

( u)(t) = (t - ) E ( (t - ) )ud
                               (3) 

Which γ
ρ μ( )t,E  is the generalized Mettig-Leffler function [32] introduced by Prabhakar in 1971: 

γ
ρ μ

Γ γ
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Definition 2. We assume that the conditions of Definition 1 hold, in which case the derivative of 

the multiplicative fraction and the Caputo-multiplicative fraction with variable order are defined 

as follows based on relations (4) and (5), respectively: 

( ) ( )t t
u+ +

-

, , , 0 ,1- , , 0

d
( f)(t) = (t), t > 0,

dt
                                                  (4)               

( ) ( )
C
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, , , 0 ,1- , , 0

d
( )(t) = (t), t > 0,

dt
                                               (5) 

That μ ρ( ) 0t , > 0 . 

Lemma 1: Let us assume ρ μ( )t,  that the numbers are real, so that μ ρ( ) 0t , > 0  in this case we 

have [39]: 

γ γμ ρ μ ρ
ρ μ ρ μ

ω ω( ) ( )
( ) ( ) .t t
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t
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, , +1
0

E ( )du = t E ( t )                                              (6) 

3. Finite difference numerical method for solving equation (1) 

In this section, we present a numerical method based on finite differences to solve Eq. (1). Here, 

Eq. (1) is considered on the domain with uniform grid like 0 10 1Nt t t and

1j jh t t  . For simplicity, the functions ( )jf t   ، ( )ju t    and ( )jt    , are represented as  jf   ، ju   

and j  , respectively. When 10 ( ) 1t , then the Caputo-Prabhakkar fractional derivative of 

1( )t the variable order is approximated by the finite difference numerical method as follows: 
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Using Eq. (6), we have: 
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Similarly, when, 20 ( ) 1t  in this case, the integral of a multivalued fraction of variable 

order 2( )t  is obtained using the numerical method of finite differences as 
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is approximated. Using Eq. (6) we have: 
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Therefore, by substituting Eqs. (8) and. (9) into Eq. (1), the discretized Eq. (1) is obtained as 

follows: 
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For 0,1, ,k j . Therefore, Eq. (10) can be considered as the following system of linear 

equations: 

0 0 0 0
0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 2 2 2 2

1 0 0 0 0 0

0 0 0 0

0 0

0

                      (13) 
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0 1
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[ , , , ] .

T
N
T

N

u u u

h h h
 

Now by substituting Eqs. (1) and (9) into Eq. (1), a system of linear equations is obtained. Since it 

is a lower triangular matrix with non-zero diagonal entries, it is invertible. Therefore, the unknown 

coefficients are calculated, which means that the numerical solutions of the introduced equation 

are obtained. 

Theorem 1. Let us assume that the coefficients j
k  and j

k  for 0,1, ,k j  and

0,1, , 1j N  introduced in relation (10) hold in relation 

    1 1 2 .j j j
j j j                                                       (14)  

In this case, the finite difference method (10) is stable. 
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Proof: It is clear that the coefficients j
k and j

k  are both positive. Therefore, we have: 
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Now we can write Eq. (10) as a recursive relation 
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Rewrite. Suppose the error is defined as 1 1 1j j ju u  representing the 1ju  exact values of 

the functionu  in 1jt . Using Eq. (16), the error in 
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It is true. By using Eq. (15), we have 
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Now, considering Eq. (14), we have 
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                                                 (19) 

Therefore, from Eqs. (18) and (19), we have 

1 1 1.
j j j j
j j j j

j j
j j

                                               (20) 

Relation (20) shows that the error is bounded if the method is stable. 

4. Numerical Examples 

To demonstrate the accuracy and efficiency of the above numerical method, we discuss two 

numerical examples as follows. These numerical examples are solved for variable-order fractional 

integral-differential equations with different step lengths, and their numerical solutions are plotted 

for different step lengths. 

Example 1. Consider the following variable-order fractional integral-differential equation: 
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where 1( ) 1 0.01t t  and 2
2( ) 1 sin ( )t t . Also ,s  the Lommel function defined in [41]. 

This example was solved using the proposed numerical method for different step lengths and its 

approximate solution for different values h  and the exact solution are shown in Figure 1. We 

observe that when the step length is reduced, the curve of the approximate solutions approaches 

the exact solution. Table 1 shows the maximum absolute error between the method of [41] and the 

proposed method for different values of . It is clearly seen from Table 1 and Figure 1 that the 

proposed method is an acceptable method to solve this problem. 

 

Figure 1. Results from solving Example 1 for different values ℎ. 

 

Table 1. Comparison between the maximum error of the proposed method and the method of [41] for example 1 

Suggested method Method [41] 

Maximum absolute error  h  
1

0,
2

 0  N  

41.3500 10  
1

32
 42.9972 10  44.7307 10  4  

53.9600 10  
1

64
 76.6335 10  

61.2874 10  6  

51.3700 10  
1

128
 107.5015 10  91.6634 10  8  

 

Example 2. Consider the following fractional-order integral-differential equation of the given 

variable: 
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where 2
1( )t t is a function given so that the exact solution of this  ( )f t and  2( ) sin( )t t   ،

problem becomes 
2

( ) cos(4 ) tu t t e  . Using the introduced method, this example is solved for 

different values of and its approximate solution for different values and the exact solution are 

shown in Figure 2. We observe that when the step length is reduced, the curve of approximate 

solutions approaches the exact solution. . Table 2 shows the maximum absolute error between the 

method [41] and the proposed method for different values ofh . It is clearly seen from Table 2 and 

Figure 2 that the proposed method is an acceptable method for solving this problem. 

 

Figure 2. Results from solving Example 2 for different values of ℎ. 

 

Table 2. Comparison between the maximum error of the proposed method and the method of [41] for Example 2 

Suggested method Method [41] 

Maximum absolute error  h  
1

0,
2

 0  N  

31.3300 10  
1

32
 22.31 10  

22.31 10  4  

68.2600 10  
1

64
 69.66 10  

69.66 10  8  

103.3300 10  
1

128
 104.55 10  

104.55 10  12  

101.500 10  
1

256
 101.91 10  

141.91 10  16  

156.4400 10  
1

512
 157.22 10  157.22 10  20  
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Example 3. Consider a variable fractional order integro-differential equation with   

2
1( ) 0.8t t t ,. Using (0) 1u initial conditions  2( ) cos( )f t t , and (sin(5 ))

2( ) tt e   

the introduced method, this example is solved for different values of h and its approximate 

solution for different values h and the exact solution are shown in Figure 3. We observe that when 

the step length is reduced, the curve of approximate solutions approaches the exact solution. . 

Table 3 shows the absolute error of the proposed method for different values of . It is clearly seen 

from Table 3 and Figure 3 that the proposed method is an acceptable method for solving this 

problem. 

 

Figure 3. Results from solving Example 3 for different values h . 

 

Table 3. Maximum absolute error of the proposed method for example 3 

Order of approximation Maximum absolute error Step length 

- 0.16495450  
1

8
h  

0.6058  0.10839211 
1

16
h  

 1.1193  0.04989323  
1

32
h  

1.1799  0.02202167  
1

64
h  

1.2824  0.00905359  
1

128
h  
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5. Conclusion 

In this paper, we have presented a numerical method based on the finite difference method for 

solving variable-order fractional integral-differential equations. The variable-order fractional 

integral and derivative considered in this paper are multi-function fractional integral and 

derivative, which are generalizations of Riemann-Liouville and Caputo fractional integral and 

derivative. We have investigated the stability of the presented method and shown that under 

certain conditions the method is stable. Three examples were presented to demonstrate the 

performance of the proposed method, and the numerical results showed that by reducing the step 

length, the numerical solutions converge to the exact solution with faster growth. The idea of this 

method can also be considered for other equations in fractional calculus. 
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