

Computational Sciences and Engineering 4(1) (2024) 79-100

Computational Sciences and Engineering

University of Guilan journal homepage: https://cse.guilan.ac.ir/

Validation of Returned Results in Asymmetric Searchable Encryption Schemes

Arian Arabnouri
 a

, Reza Ebrahimi Atani
 a,⁎

, Shiva Azizzadeh
 a

a Department of Computer Engineering, University of Guilan, Rasht, Iran

A R T I C L E I N F O A B S T R A C T

Article history:

Received 21 February 2025
Received in revised form 14 April 2025

Accepted 24 April 2025

Available online 26 April 2025

 As organizations increasingly outsource data to cloud storage, ensuring

the security and integrity of this data becomes paramount. Searchable

encryption (SE) offers a promising solution by enabling secure searches

on encrypted data, thereby preserving privacy and confidentiality.

However, existing SE schemes often overlook the issue of data integrity,

particularly when the cloud server, an external and potentially untrusted

entity, returns invalid or malicious results. This paper proposes a novel

technique for validating the results returned by the cloud server in

asymmetric searchable encryption schemes. The proposed method

introduces minimal efficiency overhead and is easily applicable to

existing schemes. By applying this technique to the dPEKS (designated

Public Key Encryption with Keyword Search) scheme, we demonstrate

a significant reduction in search time while enhancing the ability to

validate results across multiple servers. Our approach ensures that the

integrity of returned data is preserved, even in scenarios where the cloud

server may act maliciously. The proposed technique is particularly

effective in private scenarios, such as e-care and banking, where only

authorized users can send and retrieve data. This work contributes to the

ongoing effort to improve the security and reliability of searchable

encryption in cloud environments.

Keywords:

Searchable encryption
Confidentiality

Data integrity

Bilinear pairing
Unreliable server

dPEKS

1. Introduction

Secure and rapid access to data saved on cloud storage zones becomes increasingly essential in

modern lives. Cloud services and infrastructures have caused a novel development in services

provided within E-government and E-commerce, since they have high efficiency, low cost and rapid

accessibility. Nevertheless, issues related to the security of data are among the most significant

challenges that cloud zone confronts. Data security includes confidentiality, integrity, and

availability. Utilizing cloud infrastructures improves data availability, since the data on cloud can

⁎ Corresponding author.

 E-mail addresses: rebrahimi@guilan.ac.ir (R. Ebrahimi Atani)

https://doi.org/10.22124/cse.2025.29912.1095

© 2024 Published by University of Guilan

https://cse.guilan.ac.ir/
mailto:rebrahimi@guilan.ac.ir
https://doi.org/10.22124/cse.2025.29912.1095

80 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 80

be accessed anytime and anywhere. However, considering unreliable characteristic of cloud, two

other mentioned security features might be highly compromised. Cryptography is the basic

mechanism used to provide confidentiality, although it has some costs. As an example, there is no

search capability among encrypted context. Nevertheless, searching is one of the most essential

functions being performed on cloud server, since there is a huge amount of data on this server. A

practical method to preserve security of the data while searching among them is searchable

encryption. Through this method, plain text is encrypted in such a manner that searching can be

done among it while its security is preserved. Utilizing searchable encryption in an unsecure area

such as cloud zone can improve security a lot while causing minimum decrement in efficiency. This

is because it enables searching on encrypted text while preserving security of user. Providing data

confidentiality, privacy preserving for users, high efficiency, proper security and ease of

implementation, makes the searchable encryption method a leading one. Similarly to traditional

cryptography, searchable encryption has two kinds which are symmetric and asymmetric ones.

Searchable encryption is accomplished through four steps i.e. setup and key generation, encryption

and generating indices, generating trapdoor, and testing. First of all, variables and functions needed

within other scheme are produced, and key pairs of entities are generated as well. In the second step,

keywords of intended document are extracted, the document is encrypted, and an index will be

generated per each keyword. This index is sort of keyword encryption using receiver’s public key

(in asymmetric schemes) or private key (in symmetric schemes). Generally, a random output is

produced through this step in asymmetric schemes. An authorized user who intends to search,

attempts to produce a trapdoor using his intended keyword within the third step. Producing the

trapdoor will be accomplished using receiver’s private key. Trapdoor generator function receives

the keyword and receiver’s private key (in asymmetric schemes) or private key (in symmetric

schemes) and produces an output related to the generated index of the same keyword. Finally, testing

will be done after receiving the trapdoor by the server. The server verifies matching between

received trapdoor and existing indices through this step, and returns documents which have indices

matched with the trapdoor to the receiver. Returning the documents can be accomplished through

one step (sending them), or two steps i.e. returning ID of the document to the receiver by the server,

and sending intended IDs to the server by the receiver subsequently [1,2].

The other required security feature is data integrity. Users need to ensure the integrity of their data.

Generally, two entities may be able to compromise data integrity i.e. cloud server and an external

intruder. Injection attacks by which the external attacker is able to threaten data integrity are studied

in [3, 27, 28], and a prevention method is proposed in the same study. The objective of this article

is to ensure that cloud server does not violate the integrity of data. Hence, a scheme is proposed to

validate results returned from the cloud server, which can be implemented within two scenarios.

The first one is used for general applications in which everyone is able to send data to their intended

destination. It is possible for server to cheat in these scenarios due to some existing constraints.

Therefore, a second kind of application is proposed which can be used in private scenarios in which

there are certain users. E-care [29] and bank scenarios can be named as instances of this kind of

applications [30, 31, 32, 33]. The server is not able to cheat in these scenarios, although some of the

documents matched with the trapdoor may not be returned by the server. The major objective of this

article is to propose a scheme that validates the results returned from server side while preserving

the data integrity against server. Accordingly, the rest of article is organized as follows: In Section

2, related works about proposed article are explained. Required preliminaries are reviewed in section

3. Architecture of our proposed scheme is explained in section 4. The proposed scheme is described

 81 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 81

in section 5, and section 6 contains the analysis of it. Finally, the conclusion of the article is

presented in section 7.

2. Related Works

Song et al. [4] proposed the first practical scheme for searchable encryption. This scheme belongs

to the symmetric class of searchable encryption and it uses one private key during both encryption

and decryption phases. In other words, this scheme is classified among single writer/reader schemes.

No index was utilized within this scheme, and searching time for each document was related to the

length of the document consequently. However, this scheme is not efficient when there is high

amount of documents. Other efforts in this context have been made in [5-8] in which some concepts

such as index, inverted index, conjunction search, and performing search via small computational

capacity devices are introduced. Additionally, other efforts have been made in [9,10,] to verify

returned results, and some others to improve performance and security [11,12,].

Boneh et al. [13] proposed the first asymmetric searchable encryption scheme, which was named

public key encryption with keyword search scheme, and used identity-based encryption (IBE) in

order to implement searchable encryption in an asymmetric manner [34]. Public key encryption with

keyword search schemes are useful in scenarios in which multiple data owners attempt to send data

for a certain receiver. Nevertheless, scheme proposed in [13] was vulnerable to keyword guessing

attacks, since it was possible to produce the index and test the trapdoor using any generated index.

The attacker generates intended index for any words in dictionary, and tests them against the

monitored trapdoor. In the case of TRUE to be the result of test, the word used for generating

trapdoor is the same word selected by the attacker. PERKS scheme [14] was proposed to solve this

issue, in which the data owner sends his intended keyword for generating the index to the receiver.

Receiving this word, the receiver first concatenate it with a private string and hash the new string.

Subsequently, the hashed value will be sent to the data owner, and he use it for generating the

trapdoor. This scheme does not allow everyone to produce indices. Nevertheless, there were

fundamental problems with this scheme such as requiring receiver to be permanently online.

Furthermore, in the case of using a shared private string for all of the data owners, it was still possible

for them to perform a keyword guessing attack.

dPEKS [15] scheme was proposed as another approach to solve this problem, in which only server

is able to perform testing. This scheme prevents offline keyword guessing attack by limiting

searching to the server. This is because the Test function can be operated only by the server, and

the server, consequently, is the only entity which can verify matching between trapdoor and index.

Hence, it is not possible for an outer intruder to match the eavesdropped trapdoor with the index

produced based on the keyword. The underlying idea of this scheme is to encrypt indices and

trapdoors using server’s public key in a way that server’s private key becomes indispensable for

operating the Test function and comparing trapdoor with index. The algorithm for the dPEKS

scheme is as follows:

Initial agreement and key generation: The first step is picking two multiplicative cyclic groups

of degree 𝑃, named 𝐺1 and 𝐺2. Following this, a generator named 𝑔 is picked among 𝐺1, along with

two random members 𝑢1 and 𝑢2. Furthermore, 𝐻1: {0,1}∗ → 𝐺1, 𝐻2: {0,1}∗ → 𝐺1, and 𝐻3: 𝐺2 →

{0,1}𝜆 are chosen as hash functions, and three random numbers are picked among 𝑍𝑝, named 𝑎, 𝑏,

82 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 82

and 𝑐. Finally, private keys of the server and receiver is calculated as 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 = 𝑎 and 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 =

𝑏, and public ones will be 𝑃𝑈𝐵𝑅𝐸𝐶 = (𝑔𝑏 , 𝑢2

1

𝑏) and 𝑃𝑈𝐵𝑆𝐸𝑅𝑉 = (𝑔𝑎 , 𝑢1

1

𝑎) respectively.

Index generation: A random number 𝑟 is picked among 𝑍𝑝 per each word 𝑤𝑖 among the message

𝑀, and the index will be generated as 𝐼 = (𝐼1 , 𝐼2) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉 , 𝐻2(𝑤𝑖)
𝑟))).

Afterwards, all of the encrypted indices will be sent to the server along with the encrypted document.

Trapdoor generation: A random number 𝑟’ is picked among 𝑍𝑝, and the trapdoor will be generated

as 𝑇𝑤 = [𝑇1 , 𝑇2] = [𝑔𝑟’ , 𝐻2(𝑤)
1

𝑃𝑅𝐼𝑉𝑅𝐸𝐶 . 𝐻1(𝑃𝑈𝐵𝑆𝐸𝑅𝑉
𝑟’)] and will be sent to the server

subsequently.

Test: The value of 𝑡 =
T2

H1(T1
PRIVSERV

)
 is calculated at first. Thereupon, if the equation 𝐼2 ==

H2(𝑒(𝐼1 , 𝑡𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉)) was true, it can be noticed that the searched word is the same as the i-th word,

which the server will return it to the user consequently.

As mentioned above, this scheme is secure against offline keyword guessing attacks but it is still

vulnerable to online ones. In 2013, an attack was performed against this scheme, which was named

online keyword guessing attack, since the attacker had interaction with the server [16]. In 2015,

Chen [17] proposed a scheme in order to secure dPEKS scheme against online attacks, although it

was still vulnerable against cloud server [32]. Whereas, some schemes were proposed to prevent

this attack [18-21]. Proposed plans in [18,19] are some instances that are applicable to dPEKS, and

despite their constraints, they can protect against internal keyword guessing attack.

Another method was proposed in [20] based on using data owner’s key such as work done in [19].

The SAE-I scheme which is shown in Figure 1 is an authenticated searchable encryption scheme, in

which the data owner’s private key is utilized besides the receiver’s public one in order to generate

index. Moreover, generating trapdoor requires the receiver’s private key besides the data owner’s

public one. Hence, before generating trapdoor, receiver has to determine the user from whom

received documents must be searched among. This is because the trapdoor can be matched only

with indices which comprise the intended word and are generated by the user whose public key is

utilized in generating the trapdoor. Additionally, the keyword guessing attack is not possible to

perform, since the adversary is not able to generate an index for his intended word in a way that it

matches eavesdropped trapdoor generated by someone else. The algorithm for the SAE-I scheme is

as follows:

Figure 1: The SAE-I scheme.

 83 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 83

Initial agreement and key generation: The first step is picking two multiplicative cyclic groups

of degree 𝑃, named 𝐺1 and 𝐺2, along with a bilinear map function between these two groups as

𝑒: 𝐺1 × 𝐺1 → 𝐺2. Following this, a generator named 𝑔 is picked among 𝐺1, along with two hash

functions as 𝐻1: 𝐺2 → {0 , 1}∗ and 𝐻2: {0 , 1}∗ → 𝐺1. Generating each user’s key, a random number

is picked among 𝑍𝑝, named 𝑎. Subsequently, utilizing these random numbers, the key pair for user

(u) is calculated as 𝐾𝑒𝑦𝑃𝑎𝑖𝑟𝑢 = (𝑃𝑅𝐼𝑉𝑢, 𝑃𝑈𝐵𝑢) = (𝑎 , 𝑔𝑎). Finally, each user’s private key

(𝑃𝑅𝐼𝑉𝑢) will be sent exclusively to himself, by which he will be able to generate index and trapdoor

besides decrypting his documents. Moreover, user’s public key (𝑃𝑈𝐵𝑢) will be sent to all other

users, by which they will be able to encrypt documents which they intend to send to the user (u),

besides generating their indices. This public key will also be used in order to generate trapdoor for

performing search among received documents from the user (u).

Index generation: In this scheme, the index will be generated as 𝐼𝑤 =

 𝐻1(𝑒(𝑃𝑈𝐵𝑅𝐸𝐶 , 𝐻2(𝑤))𝑃𝑅𝐼𝑉𝐷𝑂).

Trapdoor generation: In this scheme, the trapdoor will be generated as 𝑇𝑤 =

 𝐻1(𝑒(𝑃𝑈𝐵𝐷𝑂, 𝐻2(𝑤))𝑃𝑅𝐼𝑉𝑅𝐸𝐶).

Test: Whenever an index and a trapdoor are both generated for a single word, and both data owner

and receiver are same users, the index and the trapdoor will have their same values. Hence, verifying

the matching between trapdoor and index only requires verifying the equation𝐼𝑤 == 𝑇𝑤. Moreover,

achieving high efficiency in performing this function only requires storing the indices in a hash table

and performing a search for the trapdoor among this hash table. These processes can be operated in

O(1) order of time, which makes this function a very high efficiency one.

It is important to mention that in SAE-I scheme it is required to build a trapdoor for each data owner,

and this issue is counted as a constraint for mentioned scheme. However, it is still efficient due to

its proper structures. To the best of the authors' knowledge there is not an asymmetric searchable

encryption scheme with verification capability. Nevertheless, the scheme proposed in [22] adds

verification capability to the KP-ABE scheme that is an attribute-based asymmetric searchable

encryption scheme. Schemes proposed in [23-26] were presented to increase capabilities of

asymmetric searchable encryption as well.

3. Preliminaries

In this section, required background is briefly reviewed.

3.1. Discrete Logarithmic Problem and Diffie-Hellman Assumption

Discrete logarithm problem is the solution 𝑥 for the equation ℎ = 𝑔𝑥 over a finite cyclic group.

Within this problem, 𝑔 and ℎ are elements of a multiplicative cyclic group of degree 𝑝 and 𝑥 is an

element of 𝑍𝑝
∗
 group. There is no efficient algorithm to solve the discrete logarithm problem as for

now. Therefore, this problem gets a vast attention in asymmetric cryptography.

Diffie-Hellman's assumption is a mostly used assumption in asymmetric cryptography that is

proposed based on the same problem. It expresses that it is not possible to calculate 𝑔𝑎𝑏 during a

polynomial time, knowing only < 𝑔 , 𝑔𝑎 , 𝑔𝑏 > without 𝑎 or 𝑏. This assumption is widely used in

asymmetric cryptography. Key exchange, digital signature, searchable encryption, IBE and IBS can

84 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 84

be named as a number of its applications. Several assumptions are proposed based on this

assumption and one of them is represented as follows:

DBDH assumption: Given 𝐺1and 𝐺2 to be two groups with prime order q, 𝑔 to be the generator of

𝐺1, and 𝑒: 𝐺1 × 𝐺1 → 𝐺2 to be a mapping, and 𝑎 , 𝑏 and 𝑐 to be three random numbers, there is

no efficient algorithm to calculate 𝑒(𝑔 , 𝑔)𝑎𝑏𝑐 having (𝑔 , 𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐) . Diffie-Hellman assumption

is used within dPEKS scheme in order to secure the trapdoor and to keep randomness of it against

the external attacker. In our proposed scheme, this assumption is used in order to exchange private

key between cloud storage and authentication server. Moreover, the generalized version of DBDH

assumption is used to exchange keys between several servers.

3.2. Bilinear Pairings

Bilinear pairings is another function that is mostly used in asymmetric cryptography. These

functions play a vital role in many Diffie-Hellman based schemes and attacks against them as well.

Symmetric and asymmetric are two types of bilinear pairing. The symmetric bilinear pairing is used

within the proposed scheme, which is defined as follows:

The e: 𝐺1 × 𝐺1 → 𝐺2 mapping is a bilinear pairing while (𝐺
1
, .) and (𝐺

2
, .) are cyclic groups with

prime order q. This mapping has the following characteristics:

1) Bilinearity: ∀ 𝑎 , 𝑏 ∈ 𝑍𝑞 , ∀ 𝑔1 , 𝑔2 ∈ 𝐺1: e(𝑔1
𝑎 , 𝑔2

𝑏) = 𝑒(𝑔1 , 𝑔2)𝑎.𝑏

2) Non-degeneracy: ∀ 𝑔 ∈ Generator of (𝐺1), e(𝑔 , 𝑔) ∈ Generator of (𝐺2).

3) Computability: There is an algorithm to effectively compute e(𝑔1 , 𝑔2) .

4. Architecture Of Proposed Scheme

An architecture including four components is used within our proposed scheme. These components

are the data owner, the receiver, the cloud server, and the authentication server. Building a trapdoor,

the receiver will be able to perform a search within documents and obtain his desired ones. Storing

the data and delivering it to the receiver are the duties assigned to the storage server. Furthermore,

the storage server is able to utilize a trapdoor received from the receiver in order to perform a search,

without learning about content of the document or the word that trapdoor is created with. This server

can be provided by a third party, and it is assumed not to be honest. Hence, returned documents

from this server may be malicious and cannot be trusted. The authentication server is obliged to

verify the documents returned from the storage server. There are two modes for the proposed

scheme. The first one is general mode in which everyone is able to send data to others. Contrary to

the first mode, it is not possible for everyone to send data to others within the second mode, and

only specific users are able to perform this action. Figure 2 and Figure 3 demonstrates the first and

the second modes respectively.

The data owner creates the index using public key of the server and receiver’s one, and sends the

document and indices set to the server. In the case of feeling necessity (tendency) for restriction, the

data owner signs produced index using his private key. Subsequently, he sends the indices set along

with their signatures, encrypted context and his ID to the server, and the server will store these data.

 85 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 85

Now the receiver generates the trapdoor using his private key and the public key of the server, then

he sends the produced trapdoor to the server.

Figure 2. Proposed architecture for general scenarios

The server gets the trapdoor and performs a test to determine whether the trapdoor matches the

index or not. In the case they match, the server sends the document to the receiver along with user’s

ID, matched index, and its signature in case of existence. The receiver sends his trapdoor along with

the returned index and its signature to the authentication server in order to ensure validity of the test.

The authentication server validates the index using the signature, and in the case of validity it checks

whether the index and the trapdoor match. It returns number 1 to the receiver if they matched,

otherwise it returns number 0. The GM scheme can be utilized for privacy preserving, and a digital

signature can be used to perform the validation and provide validity.

Figure 3. Proposed architecture for private scenarios

5. The Proposed Schemes

The cloud server is mostly considered to be honest but curious within studies done among searchable

encryption field. Nevertheless, some scenarios may occur in real world that violate the honesty of

86 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 86

server. Hence, a mechanism is required to validate the honesty of server. Providing such a

mechanism is the main objective of our proposed scheme. As mentioned previously, two situations

may occur within this scheme. When system has certain limited users, validation will be more

effective, since server can utilize the indices generated by other users for its document. The same

situation occurs within private schemes such as [19] as well.

The underlying idea of the proposed scheme is granting test capability to the trusted third party in

dPEKS scheme. In this scheme, only a single cloud server has the test capability. Therefore, server

can send a document to receiver, even if the trapdoor does not match any of the indices of the

document. This restriction is performed by adding a key pair to the cloud server in order to prevent

online keyword guessing attack. Since the test function requires the private key of server, only the

server is able to perform searching. Diffie-Hellman key exchange method is used within the

proposed scheme in order to produce a shared private key between the cloud server and trusted third

party (the authentication server). Subsequently, a public key can be generated for this shared key,

and the current key pair can be used to perform testing. The cloud server and the authentication

server both have the private key, so they both can perform testing. Hence, when a document does

not contain any index matched with the trapdoor produced by the receiver, the server cannot return

it to him. However, the server still can add an index matching the trapdoor to the indices set, and

then return it. Preventing this issue, the index will be concated with the document ID and the result

value will be signed subsequently within the proposed scheme. This signature cannot be forged by

another entity. On the other hand, existence of a signature is required for each index. Therefore, the

server cannot add its intended index to the indices set. According to existence of document ID, the

produced signature is assigned to the document, and the signature of the index within document A

cannot be used for document B.

Nevertheless, using digital signature in this scheme makes it impracticable in scenarios that data

owner is not known formerly, since validating the signature requires the data owner’s public key.

Hence, the server has to interact with the data owner earlier and obtain his public key. The proposed

scheme will be explained based on dPEKS and SAE-I schemes as follows.

5.1. Proposed scheme merged with dPEKS

Our proposed scheme is merged with public key encryption scheme with a designated tester within

this section. It includes eight algorithms that will be explained as follows.

GlobalSetup(λ): Variables and functions needed within the steps ahead are generated in this step.

Since the proposed scheme is an add-on for dPEKS scheme, this function calls the

dPEKS.GlobalSetup(λ) method. Furthermore, the generator 𝑔𝑝 will be chosen from 𝑍p. In the case

of requiring users to be restricted, a MAC function or a digital signature will be picked.

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): This algorithm calculates the key pair for the receiver. Everyone will obtain the

receiver’s public key, and the data owner can encrypt the documents and produce the index using

the receiver’s public key. Furthermore, user needs the private key to perform searching on his

documents and decrypt them as well. In the proposed scheme, the algorithm used for producing the

receiver’s key pair is similar to the one used in dPEKS scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 =

𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 and 𝑃𝑈𝐵𝑅𝐸𝐶 = 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑈𝐵𝑅𝐸𝐶).

 87 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 87

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): In the proposed scheme, a fourth entity, which must be trusted, is used in

order to validate returned results from server. Since this entity does not exist in dPEKS scheme,

there is no key generator algorithm for it as well. Therefore, this algorithm is included in our

proposed scheme. A private key is required for the tester through testing phase. Consequently, the

key pair produced for the authentication server will be used in order to exchange the key with the

cloud server and to obtain this shared key in order to perform searching. Furthermore, the validation

result of the returned result from the server will be checked by the authentication server, and the

result will be signed using this key pair in order to prevent it from being forged.

A random number 𝑏 is picked among 𝑍p and will be considered as the data owner’s private key

(𝑃𝑅𝐼𝑉AUTH−SERV = 𝑎). The public key will be calculated as 𝑃𝑈𝐵AUTH−SERV = 𝑔𝑝
𝑎 subsequently.

𝐊𝐞𝐲𝐆𝐞𝐧𝐒𝐄𝐑𝐕(𝐠𝐩): The key generator algorithm for the storage server in our proposed scheme is

similar to the one included in dPEKS, except for some changes. A random number c is picked from

𝑍p and the shared key between the storage server and the receiver will be calculated as 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 =

(𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉1 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2) = (c = 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 , 𝑃𝑈𝐵AUTH−SERV
𝑐

). Then

the public key of the server will be calculated as 𝑃𝑈𝐵𝑆𝐸𝑅𝑉 = (𝑃𝑈𝐵𝑆𝐸𝑅𝑉1 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉2) =

(𝑔𝑝
𝑐 , 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑈𝐵𝑆𝐸𝑅𝑉).

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In the case of requiring users to be restricted, a public/private key pair should be

generated for the data owner as well. This key pair will be used within producing the signature for

each index. This occurs when only certain authorized users must be able to produce the index. This

digital signature can guarantee the server that the index is produced for the intended document. The

public/private key pair is picked according to the used digital signature scheme.

𝐝𝐏𝐄𝐊𝐒(𝐰, 𝑰𝑫𝒅𝒐𝒄 , 𝐏𝐔𝐁𝐒𝐄𝐑𝐕 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩): The DO produces an index for a keyword in

order to enable searching capability for it. He accomplishes this action for every keyword in the

document. Hence, the intended index is produced calling 𝐼 = 𝑑𝑃𝐸𝐾𝑆(𝑔𝑝, 𝑃𝑈𝐵𝑅𝐸𝐶 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉1, 𝑤)

function. Then if it is required for users to be restricted, the produced index will be merged with the

document ID and signed using the data owner’s private key (𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐)). A MAC

function can also be used instead of the digital signature, since the signature will be only verified

on the authentication server side (𝐹(𝐾 , 𝐼 || 𝐼𝐷𝑑𝑜𝑐)). The value 𝐾 used in this function is a shared

key between the data owner and the server, which can be calculated through Diffie-Hellman

assumption. In the case of restricting users (using digital signature or MAC function), it is required

to send the data owner’s ID to the cloud server along with the document and the indices set and the

signature.

𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor should be produced in order to perform

searching for the intended keyword among the document. Hence,

𝑑𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉1, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑊) function will be called.

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘): Calling 𝑑𝑇𝑒𝑠𝑡(𝑔𝑝 , 𝐶 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2 , 𝑇𝑤) function, the test will be

performed on cloud server side.

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘): An additional function is used on

the authentication server side in this scheme. This function is similar to the performed test on the

storage server side and verifies the integrity of this test. The authentication server first obtains the

data owner’s public key using his ID, and compares the index with his signature subsequently. If

88 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 88

these two components match, it checks the index and the trapdoor. Hence, it calculates the shared

key between the server and itself (𝑲𝑬𝒀𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽 = (𝑷𝑼𝑩𝐒𝐄𝐑𝐕𝟏)𝑷𝑹𝑰𝑽𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽). Finally,

𝒅𝑻𝒆𝒔𝒕(𝒈𝒑 , 𝑪 , 𝑲𝑬𝒀𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽 , 𝑻𝒘) function will be called. In the case of TRUE to be the result,

the index matched the trapdoor and the server accomplished the comparison correctly.

5.2. Proposed scheme based on SAE-I

This section merges our proposed scheme with public key encryption scheme with a designated

tester. It includes eight algorithms which are explained as follows.

GlobalSetup(λ): Variables and functions needed within the steps ahead are produced in this step.

Since the proposed scheme is an add-on for SAE-I scheme, this function calls the 𝑆𝐴𝐸 −

𝐼. 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝(𝜆)method. Furthermore, the generator 𝑔𝑝 will be chosen from 𝑍p. In the case of

requiring users to be restricted, a MAC function or a digital signature will be picked.

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): Similar to the previous scheme, a public/private key pair for the receiver is

required in order to produce index and trapdoor. The same algorithm used for producing the

receiver’s key pair in the SAE-I scheme is used in this scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑅𝐼𝑉) and (𝑃𝑈𝐵𝑅𝐸𝐶 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑈𝐵).

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): Since the proposed scheme does not require a key to perform searching,

the generated key pair will be only used to sign the result for the receiver

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In this scheme the data owner’s key pair is required to produce trapdoor and index,

and the key pair is required for signing the index as well. consequently, this key pair is produced

through (𝑃𝑅𝐼𝑉𝐷𝑂 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑅𝐼𝑉) and (𝑃𝑈𝐵𝐷𝑂 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑈𝐵).

𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(𝐰, 𝐈𝐃𝐝𝐨𝐜 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩): The trapdoor and its signature will be produced

within this function through (𝐼 = 𝑆𝐴𝐸 − 𝐼. 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑃𝑈𝐵𝑅𝐸𝐶 , 𝑃𝑅𝐼𝑉𝐷𝑂, 𝑤)) and

(𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐)). The MAC function (𝐹(𝐾 , 𝐼 || 𝐼𝐷𝑑𝑜𝑐)) can be used as well.

𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor is required in order to perform searching

for the intended keyword among the document. Hence, 𝑆𝐴𝐸 − 𝐼. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑃𝑈𝐵𝐷𝑂 , 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑤)

function will be called.

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘): Calling 𝑆𝐴𝐸 − 𝐼. 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐼, 𝑇)) function, the test will be

performed on cloud server side.

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘): In this scheme, the authentication

server checks matching between the trapdoor and the index calling 𝑺𝑨𝑬 − 𝑰. 𝑩𝒖𝒊𝒍𝒅𝑰𝒏𝒅𝒆𝒙(𝑰, 𝑻)),

after ensuring the integrity of signature. In the case of TRUE to be the result, the index matched the

trapdoor and the server accomplished the comparison correctly.

Proposed scheme merged with dPEKS

In this section, our proposed scheme is merged with public key encryption scheme with a designated

tester. It includes eight algorithms which are explained as follows.

 89 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 89

GlobalSetup(λ): Variables and functions needed within the steps ahead are produced in this step.

Since the proposed scheme is an add-on for dPEKS scheme, this function calls the

dPEKS.GlobalSetup(λ) method. Furthermore, the generator 𝑔𝑝 will be picked among 𝑍p. In the case

of requiring users to be restricted, a MAC function or a digital signature will be picked.

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): This algorithm calculates key pair for the receiver. Everyone will obtain the

receiver’s public key, and the data owner can encrypt documents and generate index using the

receiver’s public key. Furthermore, user needs the private key to perform searching on his

documents and decrypt them as well. In the proposed scheme, algorithm used for producing the

receiver’s key pair is similar to the one used in the dPEKS scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 =

𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 and 𝑃𝑈𝐵𝑅𝐸𝐶 = 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑈𝐵𝑅𝐸𝐶).

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): In the proposed scheme, a fourth entity, which must be trusted, is used in

order to validate returned results from the server. Since this entity does not exist in dPEKS scheme,

there is no key generator algorithm for it as well. Therefore, this algorithm is included in our

proposed scheme. A private key is required for the tester through testing phase. Consequently, the

key pair produced for the authentication server will be used in order to exchange key with the cloud

server and to obtain this shared key in order to perform searching. Furthermore, the validation result

of the search will be signed and sent to the receiver. A random number 𝑏 is picked among 𝑍p and

will be considered as the data owner’s private key (𝑃𝑅𝐼𝑉AUTH−SERV = 𝑎). The public key will be

calculated as 𝑃𝑈𝐵AUTH−SERV = 𝑔𝑝
𝑎 subsequently.

𝐊𝐞𝐲𝐆𝐞𝐧𝐒𝐄𝐑𝐕(𝐠𝐩): The key generator algorithm for the storage server in our proposed scheme is

similar to the one included in dPEKS, except for some changes. A random number c is picked among

𝑍p and the shared key between the storage server and the receiver will be calculated

through𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 = (𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉1 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2) = (c =

𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 , 𝑃𝑈𝐵AUTH−SERV
𝑐

). Then the public key of server will be

calculated as𝑃𝑈𝐵𝑆𝐸𝑅𝑉 = (𝑃𝑈𝐵𝑆𝐸𝑅𝑉1 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉2) = (𝑔𝑝
𝑐 , 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑈𝐵𝑆𝐸𝑅𝑉).

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In the case of requiring users to be restricted, a public/private key pair should be

generated for the data owner as well. This key pair will be used within producing the signature for

each index. This occurs when only certain authorized users must be able to produce the index. This

digital signature can guarantee the server that the index is produced for the intended document. The

public/private key pair is picked according to the used digital signature scheme.

𝑩𝒖𝒊𝒍𝒅𝑻𝒂𝒃𝒍𝒆(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑫):

The receiver calls 𝑑𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑊) function in order to create a trapdoor

for each word in the dictionary for the first time. Afterwards, he sends the created trapdoors for the

authentication server. After receiving the trapdoors, the authentication server generates a table with

two columns. The first entity of each row represents the trapdoor, and the second one will be

initialized with 0.

𝐝𝐏𝐄𝐊𝐒(𝐰, 𝑰𝑫𝒅𝒐𝒄 , 𝐏𝐔𝐁𝐒𝐄𝐑𝐕 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩): The DO produces an index for a keyword in

order to enable searching capability for it. He accomplishes this action for every keyword in the

document. Hence, two random members of 𝑍𝑝
∗ will be picked (𝑟 , 𝑟′ ∈ 𝑍𝑝

∗) , then the intended

index will be produced through 𝐼 = (𝐼1 , 𝐼2, 𝐼3) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝑔𝑟′
, 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)𝑟))

𝑟′

)

90 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 90

function. Afterwards, if it is required for users to be restricted, the produced index will be merged

with the document ID and signed using the data owner’s private key (𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐)). The

index will be sent to the server along with the signature subsequently. Finally, 𝑟′ will be

authenticated with the public key of the server (𝐸𝑛𝑐𝑃𝑈𝐵AUTH−SERV
(𝑟′)) and result value will be sent

to the authentication server along with the index and its signature.

𝐔𝐩𝐝𝐚𝐭𝐞𝐓𝐚𝐛𝐥𝐞(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘):

Receiving the index, the authentication server first determines to which trapdoor it belongs. In order

to achieve this aim, the authentication server first calculates the shared key between server and itself

through 𝐾𝐸𝑌𝐴𝑈𝑇𝐻−𝑆𝐸𝑅𝑉 = (𝑃𝑈𝐵SERV1)𝑃𝑅𝐼𝑉𝐴𝑈𝑇𝐻−𝑆𝐸𝑅𝑉 . Following that, it performs testing through

calling 𝑑𝑇𝑒𝑠𝑡(𝑔𝑝 , 𝐶 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 , 𝑇𝑤) and determines to which trapdoor the received index belongs.

When the related trapdoor is recognized, the value of sum attribute associated with its entity will be

added to the value of 𝑟′ (𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑟′).

 𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor should be produced in order to perform

searching for the intended keyword among the document. Hence,

𝑑𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉1, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑊) function will be called.

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘):

In order to perform testing, the server first calculates t =
T2

H1(T1
PRIVSERV2

)
 and in the case the following

equation was true, the quested word is the i-th word and the server returns it to the user.

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘): After receiving results, user sends

them along with his trapdoor to the authentication server in order to authenticate them. After

receiving the receiver’s request by the authentication server, it verifies signatures of indices. In the

case of the signatures to be valid, it performs testing to determine the received trapdoor matches

which trapdoor saved in the table. Afterwards, it calls the test function

(𝒅𝑻𝒆𝒔𝒕(𝒈𝒑 , 𝑰 , 𝑲𝑬𝒀𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽 , 𝑻𝒘)) with the shared key for each existing index. In the case of

TRUE to be the result, the index matches the trapdoor and the server accomplished the comparison

correctly. It verifies the ∏ 𝑰𝟐 == 𝒈𝒔𝒖𝒎 equation to ensure all indices are returned by the server.

All of them are sent correctly if the equation is true.

Proposed scheme based on SAE-I

This section merges our proposed scheme with public key encryption scheme with a designated

tester. It includes eight algorithms which are explained as follows.

GlobalSetup(λ): Variables and functions needed within the steps ahead are produced in this step.

Since the proposed scheme is an add-on for the SAE-I scheme, this function calls the 𝑆𝐴𝐸 −

𝐼. 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝(𝜆)method. Furthermore, the generator 𝑔𝑝 will be picked among 𝑍p. In the case of

requiring users to be restricted, a MAC function or a digital signature will be picked.

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): Similar to the previous scheme, a public/private key pair for the receiver is

required in order to produce index and trapdoor. The same algorithm used for producing the

𝑒(𝐼3, 𝑔) == 𝑒(𝐻2(𝑒(𝐼1 , 𝑡𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2), 𝐼2)

(1)

 91 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 91

receiver’s key pair in SAE-I scheme is used in this scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑅𝐼𝑉) and (𝑃𝑈𝐵𝑅𝐸𝐶 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑈𝐵).

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): Since the proposed scheme does not require a key to perform searching,

the generated key pair will be used for encrypting and decrypting the data owner’s messages (the

value of 𝑟) and signing the result.

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In this scheme the data owner’s key pair is required to produce trapdoor and index,

and the key pair is required for signing the index as well. consequently, this key pair will be

generated through (𝑃𝑅𝐼𝑉𝐷𝑂 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑅𝐼𝑉) and (𝑃𝑈𝐵𝐷𝑂 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑈𝐵).

𝑩𝒖𝒊𝒍𝒅𝑻𝒂𝒃𝒍𝒆(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑫): The receiver calls

𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑊) function in order to create a trapdoor for each word in the

dictionary (D) for the first time. Afterwards, he sends the created trapdoors for the authentication

server. After receiving the trapdoors, the authentication server generates a table with two columns.

The first entity of each row represents the trapdoor, and the second one (sum attribute) will be

initialized with 0.

𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(𝐰, 𝐈𝐃𝐝𝐨𝐜 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩):

A random number r is picked among 𝑍𝑝
∗ in order to create the index through 𝐼 = [I1 , I2] =

 [𝑔𝑟 , (𝑆𝐴𝐸 − 𝐼. 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑃𝑈𝐵𝑅𝐸𝐶 , 𝑃𝑅𝐼𝑉𝐷𝑂, 𝑤))𝑟]. Subsequently, the index will be

concatenated with ID of the document ((𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐))) and r will be encrypted with the

public key of the authentication server (𝐸𝑛𝑐𝑃𝑈𝐵AUTH−SERV
(𝑟)). Finally, the indices will be sent to the

cloud server along with their signatures, and the encrypted r value will be sent to the authentication

server along with the index and its signature.

𝐔𝐩𝐝𝐚𝐭𝐞𝐓𝐚𝐛𝐥𝐞(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘):

Receiving the index, the authentication server first authenticates it using the signature, and then

determines to which trapdoor it belongs. In order to achieve this aim, the authentication server

performs testing through calling 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝐾𝐸𝑌𝐴𝑈𝑇𝐻−𝑆𝐸𝑅𝑉, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑊) and determines to

which trapdoor the received index belongs. Subsequently, the value of sum attribute associated with

its entity will be added to the value of r (𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑟′).

𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor is required in order to perform searching

for the intended keyword among the document. Hence, 𝑆𝐴𝐸 − 𝐼. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑃𝑈𝐵𝐷𝑂 , 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑤)

function will be called. The final trapdoor will be generated through

in which 𝑟′ is a random number among 𝑍𝑝
∗. Finally, the trapdoor will be sent to the server.

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑻𝒘): Verifying 𝑒(I1 , T2) == 𝑒(T1 , I2) equation, the test will be performed on cloud

server side. In the case of TRUE to be the result, the index, its signature and the related document

will be sent to the receiver as the result.

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘): After receiving results from the

cloud server, user sends them along with his trapdoor to the authentication server in order to

Tw = [T1 , T2] = [𝑔𝑟′
 , (𝑆𝐴𝐸 − 𝐼. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑃𝑈𝐵𝐷𝑂 , 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑤))𝑟′

] (2)

92 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 92

authenticate them. After verifying the receiver’s signature by the authentication server and in the

case of the signature to be valid, it performs testing to determine which trapdoor saved in the table

matched the received trapdoor. Afterwards, it calls the test function 𝑻𝒆𝒔𝒕(𝒈𝒑 , 𝑰 , 𝑻𝒘) for each

existing index in order to ensure all indices match the received trapdoors. It subsequently verifies

the ∏ 𝑰𝟏 == 𝒈𝒔𝒖𝒎 equation to ensure all indices are returned by the server. All of the documents

are sent correctly if the equation is true.

6. Security and Performance Analysis of the Scheme

This section provides a comprehensive analysis of the proposed scheme from both security and

performance perspectives. The analysis highlights the strengths of the scheme in terms of security

guarantees and efficiency, while also addressing potential limitations.

6.1. Performance and Efficiency analysis

The proposed scheme introduces minimal overhead while providing robust validation mechanisms

for returned results. The efficiency of the scheme can be analyzed based on the following key

aspects:

Trapdoor Generation and Testing: The generation of trapdoors by the user and the execution of

the test function by the server are computationally efficient. These operations are consistent with

the original dPEKS and SAE-I schemes, ensuring that the proposed scheme does not introduce

significant computational overhead during these critical steps. The types and number of operations

required within each step of two proposed will be explained as follows. Besides the operations of

index generation in dPEKS, the index generation phase of the first scheme needs a digital signature

operation per keyword. The shared key can be generated through one exponential function, and the

digital signature operation can be done through a MAC function per keyword. Therefore, if a

document has 𝑤 keywords, besides the operations of index generation in dPEKS, 𝑤 digital

signatures or an exponential function are required along with 𝑤 times of performing MAC function.

The operations required for index generation in dPEKS comprise two hash functions, two

exponential functions, and one bilinear mapping per word. Hence, total operations required within

index generation for a document which has 𝑤 keywords comprise 2𝑤 hash functions, 2𝑤

exponential functions, 𝑤 bilinear mappings and 𝑤 digital signatures, or alternatively, 2𝑤 hash

functions, 2𝑤 + 1 exponential functions, 𝑤 bilinear mappings and 𝑤 times of performing MAC

function.

Producing the trapdoor and performing the test function on the server-side are similar to the dPEKS

scheme. Hence, three exponential functions and two hash functions are required within the trapdoor

generation phase. Additionally, performing the test on the server-side requires a bilinear mapping,

two exponential functions and two hash functions per each index existing on the server-side. If 𝐷

documents exist on the server, each of which has 𝑤𝑎𝑣𝑔 keywords (indices) moderately, the number

of indices existing on the server will be 𝑤𝑎𝑣𝑔. 𝐷. Hence, this phase requires 𝑤𝑎𝑣𝑔. 𝐷 bilinear

mappings, 2. 𝑤𝑎𝑣𝑔. 𝐷 exponential functions and 2. 𝑤𝑎𝑣𝑔. 𝐷 hash functions. The proposed scheme

includes an additional phase apart from the dPEKS which performs the verification of returned

results. This phase is similar to the test function of the dPEKS, except for one more exponential

 93 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 93

function. Hence, if 𝐷𝑟𝑒𝑡 documents are returned by the server, the required operations will be 𝐷𝑟𝑒𝑡

bilinear mappings, 2. 𝐷𝑟𝑒𝑡 + 1 exponential functions and 2. 𝐷𝑟𝑒𝑡 hash functions.

Operating the SAE-I within the index generation phase of the first proposed scheme, when the

document contains 𝑤 keywords, requires 2𝑤 hash function, 𝑤 exponential functions, 𝑤 bilinear

mappings and 𝑤 digital signatures, or alternatively, 2𝑤 hash functions, 𝑤 + 1 exponential

functions, 𝑤 bilinear mappings and 𝑤 times of performing MAC function. Producing the trapdoor

and performing the test function on the server-side are similar to the SAE-I scheme. Hence, one

exponential function, one bilinear mapping and two hash functions are required within the trapdoor

generation phase. Additionally, performing the test on the server-side is operated in 𝑂(1) order of

time and verification of returned documents is operated in 𝑂(1) order of time as well.

 Operating the dPEKS within the second proposed scheme requires one bilinear mapping, four

exponential functions among 𝐺1, one digital signature or MAC function, and two hash functions per

each index generation. Hence, if the document contains 𝑤 keywords, the required operations will

be 2𝑤 hash function, 4𝑤 exponential functions, 𝑤 bilinear mappings and 𝑤 digital signatures, or

alternatively, 2𝑤 hash functions, 4𝑤 + 1 exponential functions, 𝑤 bilinear mappings and 𝑤 times

of performing MAC function. Producing the trapdoor is similar to the dPEKS scheme. Hence, three

exponential functions and two hash functions are required within the trapdoor generation phase.

Additionally, performing each test function requires three bilinear mappings, two exponential

functions and one division among 𝐺1, and two hash functions. If 𝑤𝑎𝑣𝑔. 𝐷 indices exist on the server,

this phase requires 3. 𝑤𝑎𝑣𝑔. 𝐷 bilinear mappings, 2. 𝑤𝑎𝑣𝑔. 𝐷 exponential functions and 2. 𝑤𝑎𝑣𝑔. 𝐷

hash functions. Moreover, performing the BuildTable function requires generating a trapdoor per

each keyword in the dictionary by the receiver. Hence, if 𝑤𝐷𝑖𝑐𝑡 words exist in the dictionary, this

phase requires 3. 𝑤𝐷𝑖𝑐𝑡 exponential functions and 2. 𝑤𝐷𝑖𝑐𝑡 hash functions. Additionally, updating

the table (UpdateTable) requires performing the test function up to the number of all keywords in

the dictionary per each index. Hence, the worst-case of operating this phase requires 3. 𝑤𝐷𝑖𝑐𝑡. 𝑤

bilinear mappings, 2. 𝑤𝐷𝑖𝑐𝑡 . 𝑤 exponential operations and 2. 𝑤𝐷𝑖𝑐𝑡. 𝑤 hash functions.

Operating the SAE-I within the second proposed scheme, when the document contains 𝑤 keywords,

requires 2𝑤 hash function, 3𝑤 exponential functions, 𝑤 bilinear mappings and 𝑤 digital signatures,

or alternatively, 2𝑤 hash functions, 3𝑤 + 1 exponential functions, 𝑤 bilinear mappings and 𝑤 times

of performing MAC function. The required operations for producing the trapdoor are similar to the

previous step. Hence, the trapdoor generation phase requires three exponential functions and two

hash functions. If 𝑤𝑎𝑣𝑔. 𝐷 indices exist on the server, operating the test phase requires 2. 𝑤𝑎𝑣𝑔. 𝐷

bilinear mappings and verification requires 2. 𝑤𝑟𝑒𝑡 bilinear mappings. Moreover, performing the

BuildTable function requires and 2. 𝑤𝐷𝑖𝑐𝑡 hash functions, 3. 𝑤𝐷𝑖𝑐𝑡 exponential functions and 𝑤𝐷𝑖𝑐𝑡

bilinear mappings. Additionally, the worst-case of operating the phase of updating the table

(UpdateTable) requires 2. 𝑤𝐷𝑖𝑐𝑡. 𝑤 bilinear mappings.

Scalability: The proposed scheme is designed to scale effectively in environments with multiple

servers. By leveraging the Diffie-Hellman key exchange, the scheme allows multiple servers to

perform testing collaboratively, reducing the search time and improving overall system

performance. This is particularly beneficial in large-scale cloud environments where search

operations are frequent and resource-intensive.

94 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 94

Storage Overhead: The scheme requires additional storage for digital signatures or MAC values

associated with each index. However, this storage overhead is minimal compared to the security

benefits it provides. The use of hash tables for storing indices further optimizes the search process,

ensuring that the validation can be performed in constant time O (1).

Table 1 compares the required operations of the proposed schemes with other schemes, and Table 2

compares the performance of them. There are some symbols and notions in Table 1 which are as

follows: the symbols 𝑒 and ℎ show exponential functions and hash functions respectively; 𝑝𝑝
𝑠 marks

the symmetric bilinear mapping; performing the MAC function is marked as 𝑀𝐴𝐶; and 𝑚𝑢𝑙𝑡 is used

to show the multiplication operation. In summary, the proposed scheme achieves a balance between

security and efficiency. While it introduces some additional computational and storage costs, these

are justified by the enhanced security guarantees and the ability to validate the integrity of returned

results.

Table 1. The number of required operations for the proposed schemes is compared to that of other schemes.
Updating

table
Building

table
Verification Searching by

server
Trapdoor

Generation
Encryption Scheme

- - - 𝑤𝑎𝑣𝑔. 𝐷. (ℎ + 𝑝𝑝
𝑠) ℎ + 𝑒 𝑤(2𝑒 + 2ℎ

+ 𝑝𝑝
𝑠)

PEKS

- - - 𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 + 2ℎ

+ 𝑝𝑝
𝑠)

3𝑒 + 2ℎ 𝑤(2𝑒 + 2ℎ
+ 𝑝𝑝

𝑠)
dPEKS

- - - 𝑂(1) 2ℎ + 𝑒
+ 𝑝𝑝

𝑠
𝑤(2ℎ + 𝑒
+ 𝑝𝑝

𝑠)
SAE-I

- - (𝐷𝑟𝑒𝑡 + 1). 𝑀𝑢𝑙𝑡 + 𝑒 𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 +

2ℎ + 𝑝𝑝
𝑠) + 𝑒 +

𝐷𝑟𝑒𝑡. 𝑀𝑢𝑙𝑡

3𝑒 + 2ℎ 𝑤(3𝑒 + 3ℎ

+ 𝑝𝑝
𝑠)

[27]

- - 𝐷𝑟𝑒𝑡. (2𝑒 + 2ℎ + 𝑝𝑝
𝑠)

+ 𝑒

𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 + 2ℎ

+ 𝑝𝑝
𝑠)

3𝑒 + 2ℎ 𝑤(2𝑒 + 2ℎ

+ 𝑝𝑝
𝑠 + 𝑀𝐴𝐶)

+ 𝑒

The first

scheme merged

with dPEKS

- - 𝑂(1) 𝑂(1) 2ℎ + 𝑒
+ 𝑝𝑝

𝑠
𝑤(2ℎ + 𝑒

+ 𝑝𝑝
𝑠 + 𝑀𝐴𝐶)

+ 𝑒

The first

scheme based

on SAE-I

𝑤𝐷𝑖𝑐𝑡 . 𝑤(2𝑒
+ 2ℎ
+ 3𝑝𝑝

𝑠)

𝑤𝐷𝑖𝑐𝑡(3𝑒
+ 2ℎ)

𝐷𝑟𝑒𝑡. (2𝑒 + 2ℎ +

3𝑝𝑝
𝑠) + 𝑒

𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 + 2ℎ

+ 3𝑝𝑝
𝑠)

3𝑒 + 2ℎ 𝑤(4𝑒 + 2ℎ

+ 𝑝𝑝
𝑠 + 𝑀𝐴𝐶)

+ 𝑒

The second

scheme merged

with dPEKS

2. 𝑤𝐷𝑖𝑐𝑡 . 𝑤. 𝑝𝑝
𝑠 𝑤𝐷𝑖𝑐𝑡(2ℎ

+ 3𝑒
+ 𝑝𝑝

𝑠)

2. 𝐷𝑟𝑒𝑡 . 𝑝𝑝
𝑠 2. 𝑤𝑎𝑣𝑔. 𝐷. 𝑝𝑝

𝑠 2ℎ + 𝑒
+ 𝑝𝑝

𝑠
𝑤(2ℎ + 3𝑒
+ 𝑝𝑝

𝑠)
The second

scheme based

on SAE-I

Table 2. The performance of the proposed schemes is compared to that of other schemes.

Adapting

with

organization

circumstances

Capability

of

processing

by

multiple

servers

Fair

payment

Capability

of

detecting

file

removal

Verification

of received

results
Publicity IKGA attack

KGA

attack
Scheme

        PEKS

     
In case of

utilizing [34]
 dPEKS

        SAE-I

        [26]

     
In case of

utilizing [34]  [27]

        [29]

     
In case of

utilizing [34]  [33]

     
In case of

utilizing [34]

or SAE-I
 First

scheme

     
In case of

utilizing [34]

or SAE-I
 Second

scheme

 95 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 95

6.2. Security analysis

The proposed schemes build upon the security foundations of the dPEKS and SAE-I schemes while

introducing additional mechanisms to ensure the integrity of returned results. The security analysis

focuses on the following key aspects:

Protection Against Malicious Servers: The primary objective of the proposed scheme is to prevent

malicious servers from returning incorrect or manipulated results. By concatenating the index with

the document ID and signing it, the scheme ensures that the server cannot forge or modify the

indices. This mechanism guarantees that only valid, authenticated indices are returned to the user.

Resistance to Keyword Guessing Attacks: The scheme is designed to resist both offline and online

keyword guessing attacks. By limiting the test function to the server and requiring the server's

private key for testing, the scheme prevents external attackers from performing offline keyword

guessing. Additionally, the use of digital signatures ensures that even if an attacker intercepts a

trapdoor, they cannot generate a valid index without the data owner's private key.

Resistance to Injection Attacks: The scheme is resistant to injection attacks, where an external

attacker attempts to inject malicious indices into the system. By requiring digital signatures for each

index, the scheme ensures that only indices generated by authorized data owners are accepted.

The security of the second proposed scheme is analyzed in this section utilizing the dPEKS scheme.

The security requirements of this scheme are stated as follows:

• An external intruder should be unable to recognize for which word an index has been

generated by the user.

• An external intruder should be unable to recognize for which word the eavesdropped index

has been generated.

• Having the public keys of the authentication server and the storage server, an external intruder

should be unable to obtain the shared key between them.

• Having a shared key with the storage server, an authentication server should not be able to

obtain the shared key between the storage server and another authentication server. Therefore,

the authentication server will not be able to perform tests unassociated with itself (e.g. other

zones of the organization).

• Having a shared key with the authentication server, a storage server should not be able to

obtain the shared key between the authentication server and another storage server. Therefore,

the storage server will not be able to perform tests unassociated with itself (e.g. data locating

on another server).

The three last security requirements are fulfilled due to utilizing the Diffie-Hellman key exchange

method, which method has the following characteristics:

• It is not possible to calculate 𝑔𝑎𝑏 during a polynomial time, knowing only 𝑔𝑎 and 𝑔𝑏 without

𝑎 or 𝑏. Hence, it is required for an intruder to have 𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 or 𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 in order to be

able to calculate the shared key between the authentication server and the storage server as

𝑔𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 . Since he has none of these values, he cannot obtain the shared key.

• Considering a communication between three users 𝑎, 𝑏, 𝑐 utilizing the Diffie-Hellman key

exchange method, if they have three shred keys for mutual communications, i.e. 𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑏,

𝑔𝑃𝑅𝐼𝑉𝑏 .𝑃𝑅𝐼𝑉𝑐 and 𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑐, the user 𝑐, who does not have 𝑃𝑅𝐼𝑉𝑎 and 𝑃𝑅𝐼𝑉𝑏, cannot

calculate the value of 𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑏 having his own private key and two shared keys i.e.

96 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 96

𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑐 and 𝑔𝑃𝑅𝐼𝑉𝑏 .𝑃𝑅𝐼𝑉𝑐. Therefore, the authentication server 1 cannot access the shared

key between the storage server and the authentication server 2 (𝑔𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣2)

utilizing 𝑔𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣1 . Similarly, the storage server 1 cannot access the shared key

between the authentication server and the storage server 2 (𝑔𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣2) utilizing

𝑔𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣1 .

According to the two mentioned characteristics, the three last attacks are not feasible. Since trapdoor

generation in the proposed scheme is similar to the trapdoor generation algorithm of the dPEKS

scheme, the security of the proposed scheme against the mentioned attacks is similar to the one of

the dPEKS. The security of the proposed scheme against the first attack will be described as follows:

Proving the security of indices in this scheme is performed through a security game which is

illustrated in Figure 3. There are two parties in this game who are the attacker and the challenger.

The attacker intends to realize for which keyword his obtained index has been generated, and the

challenger generates keys and indices. The game is played as follows:

Figure 4. The presented Security game scheme

• First, the challenger performs the 𝑆𝑒𝑡𝑢𝑝(𝑘) algorithm in order to produce the required

parameters. Afterwards, he generates public and private key-pairs for the receiver and the

authentication server by performing 𝐾𝑒𝑦𝐺𝑒𝑛REC(𝑔𝑝) and 𝐾𝑒𝑦𝐺𝑒𝑛SERV(𝑔𝑝) algorithms, and

generates the index for his intended keyword utilizing these two key-pairs.

• In the second step, an attacker requests the challenger to generate indices for a number of his

intended keywords (𝑤1 , 𝑤2 , … , 𝑤𝑞).

• The challenger calls the function 𝐵𝑢𝑖𝑙𝑑 − 𝐼𝑛𝑑𝑒𝑥(𝑤𝑖, 𝑃𝑈𝐵𝑆𝐸𝑅𝑉 , 𝑃𝑈𝐵𝑅𝐸𝐶 , 𝑔𝑝) in order to

generate indices, and sends them to the attacker subsequently.

• The attacker picks two keywords and sends them to the challenger.

• The challenger selects one of the two received keywords and generates an index for it, and

sends the index for the attacker.

• Here, the attacker has to recognize to which word the received index belongs.

It can be easily proved that the adversary’s advantage of the proposed algorithm is lower than the

adversary’s advantage of recognizing the word associated with the generated index using the

dPEKS. Hence, if an attacker can solve it with the advantage 𝜀, he can recognize the word associated

with the generated index using the dPEKS with a higher advantage. Therefore, the adversary’s

advantage of this algorithm is negligible since it is proven in [15] that the adversary’s advantage of

recognizing the word associated with the generated index using the dPEKS is negligible. it is

 97 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 97

explained as follows that the adversary’s advantage of the proposed algorithm is lower than the

adversary’s advantage of the dPEKS:

If an algorithm exists that is able to guess the word 𝑤𝑖 having a submitted index

(((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝑔𝑟′
, 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)

𝑟))
𝑟′

)), an attacker will be able to send the trapdoor

(𝐼′ = (𝐼′
1 , 𝐼′

2, 𝐼′
3) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝑔, 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)

𝑟)))) to the oracle by inserting

𝑟′ = 1. This is despite the fact that the eavesdropped trapdoor, which is generated through the

dPEKS, 𝐼 = (𝐼1, 𝐼2) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)
𝑟))) is . In other words, it is enough

to send the index as 𝐼′ = (𝐼1 , 𝑔, 𝐼2) to the oracle after eavesdropping it, and send the word returned

by the oracle to the challenger.

7. Conclusions

In this study, we presented a novel method for validating the integrity of results returned from a

cloud server in asymmetric searchable encryption schemes. Our approach leverages the Diffie-

Hellman key exchange and digital signatures to ensure that the server cannot return data with

incorrect or manipulated indices. This is achieved by concatenating the index with the document ID

and signing it, ensuring that the server cannot forge or manipulate the indices. However, it is

important to note that this scheme is most effective when the server is expected to return all relevant

documents. In scenarios where the server may skip certain documents due to resource constraints,

the scheme's effectiveness may be limited. This method is particularly effective in scenarios where

the server may act maliciously/ maliciously/honest but curious or where data integrity is a critical

concern. The proposed scheme introduces minimal overhead, requiring only a digital signature or

an additional MAC function per keyword. Importantly, the generation of trapdoors by users and the

execution of the test function remain efficient, with no significant performance degradation. The

validation process, performed by the authentication server, involves a digital signature verification,

an exponential function, and a dPEKS test function, ensuring that the returned results are both

accurate and trustworthy. Furthermore, the proposed shared key mechanism can be extended to the

dPEKS scheme, enabling multiple servers to perform testing collaboratively. This extension

enhances the scalability and flexibility of the system, making it suitable for larger, distributed

environments.

 Funding sources

We gratefully acknowledge the financial support from the Iran National Science Foundation (INSF)

[Research project 97008930].

References

 Fei Han, Jing Qin, Jiankun Hu, (2016). Secure searches in the cloud: A survey. Future Generation of

Computer Systems, Volume 62, Pages 66-75, https://doi.org/10.1016/j.future.2016.01.007.

 Bösch, C., Hartel, P., Jonker, W., Peter, A., (2014). A Survey of Provably Secure Searchable Encryption.

ACM Computing Surveys, Vol. 47, 2, pages 1-51, https://doi.org/10.1145/2636328.

 Arabnouri, A., Ebrahimi Atani, R., Azizzadeh, S., (2020). Security Analysis of Public Key Searchable

Encryption Schemes against Injection Attacks”, Cryptology ePrint Archive, Report 2020/1530,

https://eprint.iacr.org/2020/1530.

https://doi.org/10.1016/j.future.2016.01.007
https://doi.org/10.1145/2636328
https://eprint.iacr.org/2020/1530

98 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 98

 Song, D.X., Wagner, D., Perrig, A., (2000). Practical techniques for searches on encrypted data.

Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, Berkeley, CA, USA, 2000, pp.

44-55, https://doi.org/10.1109/SECPRI.2000.848445.

 Goh, E., .Secure indexes. Cryptology ePrint Archive, Rep. 2003/216, https://eprint.iacr.org/2003/216.

 Chang, YC., Mitzenmacher, M., (2005) “Privacy Preserving Keyword Searches on Remote Encrypted

Data. Applied Cryptography and Network Security (ACNS), Lecture Notes in Computer Science, Vol

3531. Springer, Berlin, Heidelberg, https://doi.org/10.1007/11496137_30.

 Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R., (2011). Searchable Symmetric Encryption:

Improved Definitions and Efficient Constructions., Journal of Computer Security, Vol. 19, No. 5, Pages:

895-934, https://doi.org/10.3233/JCS-2011-0426.

 Golle, P., Staddon, J., Waters, B., (2004). Secure Conjunctive Keyword Search over Encrypted Data.

Applied Cryptography and Network Security. ACNS 2004. Lecture Notes in Computer Science, Vol

3089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24852-1_3.

 Kurosawa, K., Ohtaki, Y., (2012). UC-Secure Searchable Symmetric Encryption. Financial

Cryptography and Data Security. FC 2012. Lecture Notes in Computer Science, Vol 7397. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32946-3_21.

 Chai, Q., Gong, G., (2012). Verifiable symmetric searchable encryption for semi-honest-but-curious

cloud servers. IEEE International Conference on Communications (ICC), Ottawa, ON, pages: 917-922,

https://doi.org/10.1109/ICC.2012.6364125.

 Moataz, T., Shikfa, A., (2013). Boolean symmetric searchable encryption”, ASIA CCS '13: Proceedings

of the 8th ACM SIGSAC symposium on Information, computer and communications security, Pages

265–276, https://doi.org/10.1145/2484313.2484347.

 Chamani, J., Papadopoulos, D., Papamanthou, C., Jalili, r., (2018) .New Constructions for Forward and

Backward Private Symmetric Searchable Encryption. CCS '18: Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, Pages 1038–1055,

https://doi.org/10.1145/3243734.3243833.

 Boneh, D., Crescenzo, G, Ostrovsky, R., Persiano, G., (2004). Public Key Encryption with Keyword

Search”, Advances in Cryptology - EUROCRYPT 2004. Lecture Notes in Computer Science, Vol 3027.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24676-3_30.

 Tang, Q., Chen, L., (2010). Public-Key Encryption with Registered Keyword Search. Public Key

Infrastructures, Services and Applications. EuroPKI 2009. Lecture Notes in Computer Science, Vol

6391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16441-5_11.

 Rhee, H. S., Park, J. H., Susilo, W., Lee, D. H., (2010). Trapdoor security in a searchable public-key

encryption scheme with a designated tester. Journal of Systems and Software, Vol. 83, Issue 5, Pages

763-771, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2009.11.726.

 Yau, W., Phan, R., Heng, W., Goi, B., (2013). Keyword guessing attacks on secure searchable public

key encryption schemes with a designated tester. International Journal of Computer Mathematics, Vol.

90(12), Pages: 2581-2587, https://doi.org/10.1080/00207160.2013.778985.

 Chen, Y., (2015). SPEKS: Secure Server-Designation Public Key Encryption with Keyword Search

against Keyword Guessing Attacks. The Computer Journal, Vol. 58, Issue 4, Pages Pages: 922–933,

https://doi.org/10.1093/comjnl/bxu013.

 Chen, R., Mu, Y., Yang, G., Guo, F., Huang, X., Wang, X., Wang, Y., (2016). Server-Aided Public Key

Encryption With Keyword Search. IEEE Transactions on Information Forensics and Security, Vol. 11,

No. 12, pages: 2833-2842, https://doi.org/10.1109/TIFS.2016.2599293.

 Sun, L., XU, C., Zhang, M., Chen, K., (2018). Hongwei LI, “Secure searchable public key encryption

against insider keyword guessing attacks from indistinguishability obfuscation. Journal of Science

China Information Sciences, Vol. 61, Issue 3, https://doi.org/10.1007/s11432-017-9124-0.

 Zhang, J., Song, C., Wang, Z., Yang, T., Ma, W., (2018). Efficient and Provable Security Searchable

Asymmetric Encryption in the Cloud. IEEE Access, Vol. 6, pp. 68384-68393,

https://doi.org/10.1109/ACCESS.2018.2872743.

 Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X., (2015). A New General Framework for Secure Public

Key Encryption with Keyword Search. Information Security and Privacy. ACISP 2015, Lecture Notes

in Computer Science, Vol 9144. Springer, Cham. https://doi.org/10.1007/978-3-319-19962-7_4.

 Liu, P., Wang, J., Ma, H., Nie, H., (2014). Efficient Verifiable Public Key Encryption with Keyword

Search Based on KP-ABE. Ninth International Conference on Broadband and Wireless Computing,

Communication and Applications, Pages: 584-589, https://doi.org/10.1109/BWCCA.2014.119.

https://doi.org/10.1109/SECPRI.2000.848445
https://eprint.iacr.org/2003/216
https://doi.org/10.1007/11496137_30
https://doi.org/10.3233/JCS-2011-0426
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1109/ICC.2012.6364125
https://doi.org/10.1145/2484313.2484347
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-16441-5_11
https://doi.org/10.1016/j.jss.2009.11.726
https://doi.org/10.1080/00207160.2013.778985
https://doi.org/10.1093/comjnl/bxu013
https://doi.org/10.1109/TIFS.2016.2599293
https://doi.org/10.1007/s11432-017-9124-0
https://doi.org/10.1109/ACCESS.2018.2872743
https://doi.org/10.1007/978-3-319-19962-7_4
https://doi.org/10.1109/BWCCA.2014.119

 99 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 99

 Hwang, Y., Lee, P., (2007). Public Key Encryption with Conjunctive Keyword Search and Its Extension

to a Multi-user System. Pairing-Based Cryptography – Pairing 2007, Lecture Notes in Computer

Science, Vol 4575, Springer, https://doi.org/10.1007/978-3-540-73489-5_2.

 Shi, E., Bethencourt, J., Chan, T. H., Song, D., Perrig, A., (2007). Multi-Dimensional Range Query over

Encrypted Data. IEEE Symposium on Security and Privacy (SP'07), Berkeley, CA, 2007, pp. 350-364,

https://doi.org/10.1109/SP.2007.29.

 Boneh, D., Waters, B., (2007). Conjunctive, Subset, and Range Queries on Encrypted Data. Theory of

Cryptography. TCC 2007, Lecture Notes in Computer Science, Vol 4392. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-70936-7_29.

 Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith, W.E., (2007). Public Key Encryption That Allows

PIR Queries. Advances in Cryptology - CRYPTO 2007. Lecture Notes in Computer Science, Vol 4622.

Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-74143-5_4.

 Arabnouri, A., Security Evaluation of Searchable Encryption protocols. MSc Thesis, University of

Guilan, 2019, (in Persian).

 Arabnouri, A., Ebrahimi Atani, R., Azizzadeh, S., (2020). Security Analysis of Public Key Searchable

Encryption Schemes against Injection Attacks”, Cryptology ePrint Archive, Report 2020/1553,

https://eprint.iacr.org/2020/1530.

 Arabnouri, A., Shafieinejad, A., (2024). BACASE-SH: Blockchain-based authenticated certificate-less

asymmetric searchable encryption for smart healthcare. Peer-to-Peer Networking and

Applications, Vol.17, Pages: 2298–2314, https://doi.org/10.1007/s12083-024-01687-x.

 Amorim, I., Costa, I. (2023). Leveraging Searchable Encryption through Homomorphic Encryption: A

Comprehensive Analysis. Mathematics, Vol.11(13), 2948. https://doi.org/10.3390/math11132948.

 Duan, G., Li, S., (2023). Verifiable and Searchable Symmetric Encryption Scheme Based on the Public

Key Cryptosystem. Electronics, Vol. 2(18), 3965. https://doi.org/10.3390/electronics12183965

 Fugkeaw, S., Hak, L., Theeramunkong, T., (2024). Achieving Secure, Verifiable, and Efficient Boolean

Keyword Searchable Encryption for Cloud Data Warehouse. IEEE Access, Vol. 12, pp. 49848-49864,

https://doi.org/10.1109/ACCESS.2024.3383320.

 Shen, F., Shi, L., Zhang, J., Xu, C., Chen, Y., He, Y., (2024). BMSE: Blockchain-based multi-keyword

searchable encryption for electronic medical records. Computer Standards & Interfaces, Vol. 89,

103824, ISSN 0920-5489, https://doi.org/10.1016/j.csi.2023.103824.

 Meng, L., Chen, L., Tian, Y., Manulis, M., Liu, S., (2024). FEASE: Fast and Expressive Asymmetric

Searchable Encryption. 33rd USENIX Security Symposium, ISBN: 978-1-939133-44-1, pages = 2545-

2562.

 Qingji Zheng, Shouhuai Xu, Giuseppe Ateniese, "VABKS: Verifiable attribute-based keyword search

over outsourced encrypted data," IEEE INFOCOM 2014 - IEEE Conference on Computer

Communications, Toronto, ON, (2014), pp. 522-530, https://doi.org/10.1109/INFOCOM.2014.6847976

 Binrui Zhu, Jiameng, SunJing Qin, Jixin Ma (2018) “The Public Verifiability of Public Key Encryption

with Keyword Search”. In: Hu J., Khalil I., Tari Z., Wen S. (eds) Mobile Networks and Management.

MONAMI 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-90775-8_24

 Pengliang Liu, Jianfneg Wang, Hua Ma, Haixin Nie, “Efficient Verifiable Public Key Encryption with

Keyword Search Based on KP-ABE”, 2014 Ninth International Conference on Broadband and Wireless

Computing, Communication and Applications, Guangdong, 2014, pp. 584-589,
https://doi.org/10.1109/BWCCA.2014.119
 Rui Zhang, Rui Xue, Ting Yu, Ling Liu, "PVSAE: A Public Verifiable Searchable Encryption Service

Framework for Outsourced Encrypted Data," 2016 IEEE International Conference on Web Services

(ICWS), San Francisco, CA, 2016, pp. 428-435, https://doi.org/10.1109/ICWS.2016.62

 Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, Kui Ren, "Searching an

Encrypted Cloud Meets Blockchain: A Decentralized, Reliable and Fair Realization," IEEE INFOCOM

2018 - IEEE Conference on Computer Communications, Honolulu, HI, 2018, pp. 792-800,

https://doi.org/10.1109/INFOCOM.2018.8485890

 Yinghui Zhang, Robert H. Deng, Jiangang Shu, Kan Yang, Dong Zheng, "TKSE: Trustworthy Keyword

Search Over Encrypted Data With Two-Side Verifiability via Blockchain," in IEEE Access, vol. 6, pp.

31077-31087, 2018, https://doi.org/10.1109/ACCESS.2018.2844400

 Shahzaib Tahir, Muttukrishnan Rajarajan, "Privacy-Preserving Searchable Encryption Framework for

Permissioned Blockchain Networks," 2018 IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and

https://doi.org/10.1007/978-3-540-73489-5_2
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-74143-5_4
https://eprint.iacr.org/2020/1530
https://doi.org/10.1007/s12083-024-01687-x
https://doi.org/10.3390/math11132948
https://doi.org/10.3390/electronics12183965
https://doi.org/10.1109/ACCESS.2024.3383320
https://doi.org/10.1016/j.csi.2023.103824
https://doi.org/10.1109/INFOCOM.2014.6847976
https://doi.org/10.1007/978-3-319-90775-8_24
https://doi.org/10.1109/BWCCA.2014.119
https://doi.org/10.1109/ICWS.2016.62
https://doi.org/10.1109/INFOCOM.2018.8485890
https://doi.org/10.1109/ACCESS.2018.2844400

100 A. Arabnouri et al. / Computational Sciences and Engineering 4(1) (2024) 79-100 100

Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 2018, pp. 1628-

1633, https://doi.org/10.1109/Cybermatics_2018.2018.00272

 Rahnama Lashkami, S., Ebrahimi Atani, R., Arabnouri, A., Salemi, G., (2020). A Blockchain Based

Framework for Complete Secure Data Outsourcing with Malicious Behavior Prevention. 28th Iranian

Conference on Electrical Engineering (ICEE), Tabriz, Iran, 2020, pp. 1-7,

https://doi.org/10.1109/ICEE50131.2020.9260866

 Arabnouri, A., Ebrahimi Atani, R., (2018). Asymmetric searchable encryption secure against Insider

Key Guessing Attacks. The 26th Iranian Conference on Electrical Engineering (ICEE) 08-10 May 2018,

Mashhad, Iran.

https://doi.org/10.1109/Cybermatics_2018.2018.00272
https://doi.org/10.1109/ICEE50131.2020.9260866

