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 As organizations increasingly outsource data to cloud storage, ensuring 

the security and integrity of this data becomes paramount. Searchable 

encryption (SE) offers a promising solution by enabling secure searches 

on encrypted data, thereby preserving privacy and confidentiality. 

However, existing SE schemes often overlook the issue of data integrity, 

particularly when the cloud server, an external and potentially untrusted 

entity, returns invalid or malicious results. This paper proposes a novel 

technique for validating the results returned by the cloud server in 

asymmetric searchable encryption schemes. The proposed method 

introduces minimal efficiency overhead and is easily applicable to 

existing schemes. By applying this technique to the dPEKS (designated 

Public Key Encryption with Keyword Search) scheme, we demonstrate 

a significant reduction in search time while enhancing the ability to 

validate results across multiple servers. Our approach ensures that the 

integrity of returned data is preserved, even in scenarios where the cloud 

server may act maliciously. The proposed technique is particularly 

effective in private scenarios, such as e-care and banking, where only 

authorized users can send and retrieve data. This work contributes to the 

ongoing effort to improve the security and reliability of searchable 

encryption in cloud environments. 
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1. Introduction 

Secure and rapid access to data saved on cloud storage zones becomes increasingly essential in 

modern lives. Cloud services and infrastructures have caused a novel development in services 

provided within E-government and E-commerce, since they have high efficiency, low cost and rapid 

accessibility. Nevertheless, issues related to the security of data are among the most significant 

challenges that cloud zone confronts. Data security includes confidentiality, integrity, and 

availability. Utilizing cloud infrastructures improves data availability, since the data on cloud can 
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be accessed anytime and anywhere. However, considering unreliable characteristic of cloud, two 

other mentioned security features might be highly compromised. Cryptography is the basic 

mechanism used to provide confidentiality, although it has some costs. As an example, there is no 

search capability among encrypted context. Nevertheless, searching is one of the most essential 

functions being performed on cloud server, since there is a huge amount of data on this server. A 

practical method to preserve security of the data while searching among them is searchable 

encryption. Through this method, plain text is encrypted in such a manner that searching can be 

done among it while its security is preserved. Utilizing searchable encryption in an unsecure area 

such as cloud zone can improve security a lot while causing minimum decrement in efficiency. This 

is because it enables searching on encrypted text while preserving security of user. Providing data 

confidentiality, privacy preserving for users, high efficiency, proper security and ease of 

implementation, makes the searchable encryption method a leading one. Similarly to traditional 

cryptography, searchable encryption has two kinds which are symmetric and asymmetric ones. 

Searchable encryption is accomplished through four steps i.e. setup and key generation, encryption 

and generating indices, generating trapdoor, and testing. First of all, variables and functions needed 

within other scheme are produced, and key pairs of entities are generated as well. In the second step, 

keywords of intended document are extracted, the document is encrypted, and an index will be 

generated per each keyword. This index is sort of keyword encryption using receiver’s public key 

(in asymmetric schemes) or private key (in symmetric schemes). Generally, a random output is 

produced through this step in asymmetric schemes. An authorized user who intends to search, 

attempts to produce a trapdoor using his intended keyword within the third step. Producing the 

trapdoor will be accomplished using receiver’s private key. Trapdoor generator function receives 

the keyword and receiver’s private key (in asymmetric schemes) or private key (in symmetric 

schemes) and produces an output related to the generated index of the same keyword. Finally, testing 

will be done after receiving the trapdoor by the server. The server verifies matching between 

received trapdoor and existing indices through this step, and returns documents which have indices 

matched with the trapdoor to the receiver. Returning the documents can be accomplished through 

one step (sending them), or two steps i.e. returning ID of the document to the receiver by the server, 

and sending intended IDs to the server by the receiver subsequently [1,2].  

The other required security feature is data integrity. Users need to ensure the integrity of their data. 

Generally, two entities may be able to compromise data integrity i.e. cloud server and an external 

intruder. Injection attacks by which the external attacker is able to threaten data integrity are studied 

in [3, 27, 28], and a prevention method is proposed in the same study. The objective of this article 

is to ensure that cloud server does not violate the integrity of data. Hence, a scheme is proposed to 

validate results returned from the cloud server, which can be implemented within two scenarios. 

The first one is used for general applications in which everyone is able to send data to their intended 

destination. It is possible for server to cheat in these scenarios due to some existing constraints. 

Therefore, a second kind of application is proposed which can be used in private scenarios in which 

there are certain users. E-care [29] and bank scenarios can be named as instances of this kind of 

applications [30, 31, 32, 33]. The server is not able to cheat in these scenarios, although some of the 

documents matched with the trapdoor may not be returned by the server. The major objective of this 

article is to propose a scheme that validates the results returned from server side while preserving 

the data integrity against server. Accordingly, the rest of article is organized as follows: In Section 

2, related works about proposed article are explained. Required preliminaries are reviewed in section 

3. Architecture of our proposed scheme is explained in section 4. The proposed scheme is described 
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in section 5, and section 6 contains the analysis of it. Finally, the conclusion of the article is 

presented in section 7. 

2. Related Works 

Song et al. [4] proposed the first practical scheme for searchable encryption. This scheme belongs 

to the symmetric class of searchable encryption and it uses one private key during both encryption 

and decryption phases. In other words, this scheme is classified among single writer/reader schemes. 

No index was utilized within this scheme, and searching time for each document was related to the 

length of the document consequently. However, this scheme is not efficient when there is high 

amount of documents. Other efforts in this context have been made in [5-8] in which some concepts 

such as index, inverted index, conjunction search, and performing search via small computational 

capacity devices are introduced. Additionally, other efforts have been made in [9,10, ] to verify 

returned results, and some others to improve performance and security [11,12, ]. 

Boneh et al. [13] proposed the first asymmetric searchable encryption scheme, which was named 

public key encryption with keyword search scheme, and used identity-based encryption (IBE) in 

order to implement searchable encryption in an asymmetric manner [34]. Public key encryption with 

keyword search schemes are useful in scenarios in which multiple data owners attempt to send data 

for a certain receiver. Nevertheless, scheme proposed in [13] was vulnerable to keyword guessing 

attacks, since it was possible to produce the index and test the trapdoor using any generated index. 

The attacker generates intended index for any words in dictionary, and tests them against the 

monitored trapdoor. In the case of TRUE to be the result of test, the word used for generating 

trapdoor is the same word selected by the attacker. PERKS scheme [14] was proposed to solve this 

issue, in which the data owner sends his intended keyword for generating the index to the receiver. 

Receiving this word, the receiver first concatenate it with a private string and hash the new string. 

Subsequently, the hashed value will be sent to the data owner, and he use it for generating the 

trapdoor. This scheme does not allow everyone to produce indices. Nevertheless, there were 

fundamental problems with this scheme such as requiring receiver to be permanently online. 

Furthermore, in the case of using a shared private string for all of the data owners, it was still possible 

for them to perform a keyword guessing attack.  

dPEKS [15] scheme was proposed as another approach to solve this problem, in which only server 

is able to perform testing. This scheme prevents offline keyword guessing attack by limiting 

searching to the server.  This is because the Test function can be operated only by the server, and 

the server, consequently, is the only entity which can verify matching between trapdoor and index. 

Hence, it is not possible for an outer intruder to match the eavesdropped trapdoor with the index 

produced based on the keyword. The underlying idea of this scheme is to encrypt indices and 

trapdoors using server’s public key in a way that server’s private key becomes indispensable for 

operating the Test function and comparing trapdoor with index. The algorithm for the dPEKS 

scheme is as follows: 

Initial agreement and key generation: The first step is picking two multiplicative cyclic groups 

of degree 𝑃, named 𝐺1 and 𝐺2. Following this, a generator named 𝑔 is picked among 𝐺1, along with 

two random members 𝑢1 and 𝑢2. Furthermore, 𝐻1: {0,1}∗  →  𝐺1, 𝐻2: {0,1}∗  →  𝐺1, and 𝐻3: 𝐺2 →

{0,1}𝜆 are chosen as hash functions, and three random numbers are picked among 𝑍𝑝, named 𝑎, 𝑏, 
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and 𝑐. Finally, private keys of the server and receiver is calculated as 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 = 𝑎 and  𝑃𝑅𝐼𝑉𝑅𝐸𝐶 =

𝑏, and public ones will be 𝑃𝑈𝐵𝑅𝐸𝐶 = (𝑔𝑏 , 𝑢2

1

𝑏) and 𝑃𝑈𝐵𝑆𝐸𝑅𝑉 = (𝑔𝑎 , 𝑢1

1

𝑎) respectively.  

Index generation: A random number 𝑟 is picked among 𝑍𝑝 per each word 𝑤𝑖 among the message 

𝑀, and the index will be generated as 𝐼 =  (𝐼1 , 𝐼2) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉 , 𝐻2(𝑤𝑖)
𝑟))). 

Afterwards, all of the encrypted indices will be sent to the server along with the encrypted document.  

Trapdoor generation: A random number 𝑟’ is picked among 𝑍𝑝, and the trapdoor will be generated 

as 𝑇𝑤 = [𝑇1 , 𝑇2] =  [𝑔𝑟’ , 𝐻2(𝑤)
1

𝑃𝑅𝐼𝑉𝑅𝐸𝐶  . 𝐻1(𝑃𝑈𝐵𝑆𝐸𝑅𝑉
𝑟’)] and will be sent to the server 

subsequently. 

Test: The value of 𝑡 =
T2

H1(T1
PRIVSERV

 )
 is calculated at first. Thereupon, if the equation 𝐼2 ==

H2(𝑒(𝐼1 , 𝑡𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉)) was true, it can be noticed that the searched word is the same as the i-th word, 

which the server will return it to the user consequently.  

As mentioned above, this scheme is secure against offline keyword guessing attacks but it is still 

vulnerable to online ones. In 2013, an attack was performed against this scheme, which was named 

online keyword guessing attack, since the attacker had interaction with the server [16]. In 2015, 

Chen [17] proposed a scheme in order to secure dPEKS scheme against online attacks, although it 

was still vulnerable against cloud server [32]. Whereas, some schemes were proposed to prevent 

this attack [18-21]. Proposed plans in [18,19] are some instances that are applicable to dPEKS, and 

despite their constraints, they can protect against internal keyword guessing attack.  

Another method was proposed in [20] based on using data owner’s key such as work done in [19]. 

The SAE-I scheme which is shown in Figure 1 is an authenticated searchable encryption scheme, in 

which the data owner’s private key is utilized besides the receiver’s public one in order to generate 

index. Moreover, generating trapdoor requires the receiver’s private key besides the data owner’s 

public one. Hence, before generating trapdoor, receiver has to determine the user from whom 

received documents must be searched among. This is because the trapdoor can be matched only 

with indices which comprise the intended word and are generated by the user whose public key is 

utilized in generating the trapdoor. Additionally, the keyword guessing attack is not possible to 

perform, since the adversary is not able to generate an index for his intended word in a way that it 

matches eavesdropped trapdoor generated by someone else. The algorithm for the SAE-I scheme is 

as follows: 

 

Figure 1: The SAE-I scheme. 
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Initial agreement and key generation: The first step is picking two multiplicative cyclic groups 

of degree 𝑃, named 𝐺1 and 𝐺2, along with a bilinear map function between these two groups as 

𝑒: 𝐺1  ×  𝐺1  →  𝐺2. Following this, a generator named 𝑔 is picked among 𝐺1, along with two hash 

functions as 𝐻1: 𝐺2  → {0 , 1}∗ and 𝐻2: {0 , 1}∗  → 𝐺1. Generating each user’s key, a random number 

is picked among 𝑍𝑝, named 𝑎. Subsequently, utilizing these random numbers, the key pair for user 

(u) is calculated as 𝐾𝑒𝑦𝑃𝑎𝑖𝑟𝑢 = (𝑃𝑅𝐼𝑉𝑢, 𝑃𝑈𝐵𝑢) = (𝑎 , 𝑔𝑎). Finally, each user’s private key 

(𝑃𝑅𝐼𝑉𝑢) will be sent exclusively to himself, by which he will be able to generate index and trapdoor 

besides decrypting his documents. Moreover, user’s public key (𝑃𝑈𝐵𝑢) will be sent to all other 

users, by which they will be able to encrypt documents which they intend to send to the user (u), 

besides generating their indices. This public key will also be used in order to generate trapdoor for 

performing search among received documents from the user (u). 

Index generation: In this scheme, the index will be generated as 𝐼𝑤 =

 𝐻1(𝑒(𝑃𝑈𝐵𝑅𝐸𝐶 , 𝐻2(𝑤))𝑃𝑅𝐼𝑉𝐷𝑂). 

Trapdoor generation: In this scheme, the trapdoor will be generated as 𝑇𝑤 =

 𝐻1(𝑒(𝑃𝑈𝐵𝐷𝑂, 𝐻2(𝑤))𝑃𝑅𝐼𝑉𝑅𝐸𝐶). 

Test: Whenever an index and a trapdoor are both generated for a single word, and both data owner 

and receiver are same users, the index and the trapdoor will have their same values. Hence, verifying 

the matching between trapdoor and index only requires verifying the equation𝐼𝑤 == 𝑇𝑤. Moreover, 

achieving high efficiency in performing this function only requires storing the indices in a hash table 

and performing a search for the trapdoor among this hash table. These processes can be operated in 

O(1) order of time, which makes this function a very high efficiency one. 

It is important to mention that in SAE-I scheme it is required to build a trapdoor for each data owner, 

and this issue is counted as a constraint for mentioned scheme. However, it is still efficient due to 

its proper structures. To the best of the authors' knowledge there is not an asymmetric searchable 

encryption scheme with verification capability. Nevertheless, the scheme proposed in [22] adds 

verification capability to the KP-ABE scheme that is an attribute-based asymmetric searchable 

encryption scheme. Schemes proposed in [23-26] were presented to increase capabilities of 

asymmetric searchable encryption as well. 

3. Preliminaries 

In this section, required background is briefly reviewed.  

3.1. Discrete Logarithmic Problem and Diffie-Hellman Assumption 

Discrete logarithm problem is the solution 𝑥 for the equation ℎ = 𝑔𝑥 over a finite cyclic group. 

Within this problem, 𝑔 and ℎ are elements of a multiplicative cyclic group of degree 𝑝  and 𝑥 is an 

element of   𝑍𝑝
∗
 group. There is no efficient algorithm to solve the discrete logarithm problem as for 

now. Therefore, this problem gets a vast attention in asymmetric cryptography. 

Diffie-Hellman's assumption  is a mostly used assumption in asymmetric cryptography that is 

proposed based on the same problem. It expresses that it is not possible to calculate 𝑔𝑎𝑏 during a 

polynomial time, knowing only < 𝑔 , 𝑔𝑎 , 𝑔𝑏 > without 𝑎 or 𝑏. This assumption is widely used in 

asymmetric cryptography. Key exchange, digital signature, searchable encryption, IBE and IBS can 
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be named as a number of its applications. Several assumptions are proposed based on this 

assumption and one of them is represented as follows: 

DBDH assumption: Given 𝐺1and  𝐺2 to be two groups with prime order q, 𝑔 to be the generator of 

𝐺1, and 𝑒: 𝐺1  ×  𝐺1  →  𝐺2 to be a mapping, and 𝑎 , 𝑏 and 𝑐 to be three random numbers, there is 

no efficient algorithm to calculate 𝑒(𝑔 , 𝑔)𝑎𝑏𝑐 having (𝑔 , 𝑔𝑎  , 𝑔𝑏 , 𝑔𝑐) . Diffie-Hellman assumption 

is used within dPEKS scheme in order to secure the trapdoor and to keep randomness of it against 

the external attacker. In our proposed scheme, this assumption is used in order to exchange private 

key between cloud storage and authentication server. Moreover, the generalized version of DBDH 

assumption is used to exchange keys between several servers. 

3.2. Bilinear Pairings 

Bilinear pairings is another function that is mostly used in asymmetric cryptography. These 

functions play a vital role in many Diffie-Hellman based schemes and attacks against them as well. 

Symmetric and asymmetric are two types of bilinear pairing. The symmetric bilinear pairing is used 

within the proposed scheme, which is defined as follows: 

The e: 𝐺1  ×  𝐺1  →  𝐺2 mapping is a bilinear pairing while (𝐺
1
, . ) and (𝐺

2
, . ) are cyclic groups with 

prime order q. This mapping has the following characteristics: 

1) Bilinearity: ∀ 𝑎 , 𝑏 ∈  𝑍𝑞 , ∀ 𝑔1 , 𝑔2  ∈  𝐺1: e(𝑔1
𝑎 , 𝑔2

𝑏) = 𝑒(𝑔1 , 𝑔2)𝑎.𝑏 

2) Non-degeneracy: ∀ 𝑔 ∈ Generator of (𝐺1), e(𝑔 , 𝑔) ∈ Generator of (𝐺2). 

3) Computability: There is an algorithm to effectively compute e(𝑔1 , 𝑔2) . 

4. Architecture Of Proposed Scheme 

An architecture including four components is used within our proposed scheme. These components 

are the data owner, the receiver, the cloud server, and the authentication server. Building a trapdoor, 

the receiver will be able to perform a search within documents and obtain his desired ones. Storing 

the data and delivering it to the receiver are the duties assigned to the storage server. Furthermore, 

the storage server is able to utilize a trapdoor received from the receiver in order to perform a search, 

without learning about content of the document or the word that trapdoor is created with. This server 

can be provided by a third party, and it is assumed not to be honest. Hence, returned documents 

from this server may be malicious and cannot be trusted. The authentication server is obliged to 

verify the documents returned from the storage server. There are two modes for the proposed 

scheme. The first one is general mode in which everyone is able to send data to others. Contrary to 

the first mode, it is not possible for everyone to send data to others within the second mode, and 

only specific users are able to perform this action. Figure 2 and Figure 3 demonstrates the first and 

the second modes respectively. 

The data owner creates the index using public key of the server and receiver’s one, and sends the 

document and indices set to the server. In the case of feeling necessity (tendency) for restriction, the 

data owner signs produced index using his private key. Subsequently, he sends the indices set along 

with their signatures, encrypted context and his ID to the server, and the server will store these data. 
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Now the receiver generates the trapdoor using his private key and the public key of the server, then 

he sends the produced trapdoor to the server. 

 

Figure 2. Proposed architecture for general scenarios 

The server gets the trapdoor and performs a test to determine whether the trapdoor matches the 

index or not. In the case they match, the server sends the document to the receiver along with user’s 

ID, matched index, and its signature in case of existence. The receiver sends his trapdoor along with 

the returned index and its signature to the authentication server in order to ensure validity of the test. 

The authentication server validates the index using the signature, and in the case of validity it checks 

whether the index and the trapdoor match. It returns number 1 to the receiver if they matched, 

otherwise it returns number 0. The GM scheme can be utilized for privacy preserving, and a digital 

signature can be used to perform the validation and provide validity. 

 

Figure 3. Proposed architecture for private scenarios 

5. The Proposed Schemes 

The cloud server is mostly considered to be honest but curious within studies done among searchable 

encryption field. Nevertheless, some scenarios may occur in real world that violate the honesty of 
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server. Hence, a mechanism is required to validate the honesty of server. Providing such a 

mechanism is the main objective of our proposed scheme. As mentioned previously, two situations 

may occur within this scheme. When system has certain limited users, validation will be more 

effective, since server can utilize the indices generated by other users for its document. The same 

situation occurs within private schemes such as [19] as well.  

The underlying idea of the proposed scheme is granting test capability to the trusted third party in 

dPEKS scheme. In this scheme, only a single cloud server has the test capability. Therefore, server 

can send a document to receiver, even if the trapdoor does not match any of the indices of the 

document. This restriction is performed by adding a key pair to the cloud server in order to prevent 

online keyword guessing attack. Since the test function requires the private key of server, only the 

server is able to perform searching. Diffie-Hellman key exchange method is used within the 

proposed scheme in order to produce a shared private key between the cloud server and trusted third 

party (the authentication server). Subsequently, a public key can be generated for this shared key, 

and the current key pair can be used to perform testing. The cloud server and the authentication 

server both have the private key, so they both can perform testing. Hence, when a document does 

not contain any index matched with the trapdoor produced by the receiver, the server cannot return 

it to him. However, the server still can add an index matching the trapdoor to the indices set, and 

then return it. Preventing this issue, the index will be concated with the document ID and the result 

value will be signed subsequently within the proposed scheme. This signature cannot be forged by 

another entity. On the other hand, existence of a signature is required for each index. Therefore, the 

server cannot add its intended index to the indices set. According to existence of document ID, the 

produced signature is assigned to the document, and the signature of the index within document A 

cannot be used for document B. 

Nevertheless, using digital signature in this scheme makes it impracticable in scenarios that data 

owner is not known formerly, since validating the signature requires the data owner’s public key. 

Hence, the server has to interact with the data owner earlier and obtain his public key. The proposed 

scheme will be explained based on dPEKS and SAE-I schemes as follows.  

5.1. Proposed scheme merged with dPEKS 

Our proposed scheme is merged with public key encryption scheme with a designated tester within 

this section. It includes eight algorithms that will be explained as follows. 

GlobalSetup(λ): Variables and functions needed within the steps ahead are generated in this step. 

Since the proposed scheme is an add-on for dPEKS scheme, this function calls the 

dPEKS.GlobalSetup(λ) method. Furthermore, the generator 𝑔𝑝 will be chosen from 𝑍p. In the case 

of requiring users to be restricted, a MAC function or a digital signature will be picked.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): This algorithm calculates the key pair for the receiver. Everyone will obtain the 

receiver’s public key, and the data owner can encrypt the documents and produce the index using 

the receiver’s public key. Furthermore, user needs the private key to perform searching on his 

documents and decrypt them as well. In the proposed scheme, the algorithm used for producing the 

receiver’s key pair is similar to the one used in dPEKS scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 =

𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 and 𝑃𝑈𝐵𝑅𝐸𝐶 = 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑈𝐵𝑅𝐸𝐶 ). 
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𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): In the proposed scheme, a fourth entity, which must be trusted, is used in 

order to validate returned results from server. Since this entity does not exist in dPEKS scheme, 

there is no key generator algorithm for it as well. Therefore, this algorithm is included in our 

proposed scheme. A private key is required for the tester through testing phase. Consequently, the 

key pair produced for the authentication server will be used in order to exchange the key with the 

cloud server and to obtain this shared key in order to perform searching. Furthermore, the validation 

result of the returned result from the server will be checked by the authentication server, and the 

result will be signed using this key pair in order to prevent it from being forged. 

A random number 𝑏 is picked among 𝑍p and will be considered as the data owner’s private key 

(𝑃𝑅𝐼𝑉AUTH−SERV =  𝑎). The public key will be calculated as 𝑃𝑈𝐵AUTH−SERV =  𝑔𝑝
𝑎 subsequently.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐒𝐄𝐑𝐕(𝐠𝐩): The key generator algorithm for the storage server in our proposed scheme is 

similar to the one included in dPEKS, except for some changes. A random number c is picked from 

𝑍p and the shared key between the storage server and the receiver will be calculated as 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 =

(𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉1 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2) =   (c = 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 , 𝑃𝑈𝐵AUTH−SERV
𝑐 

). Then 

the public key of  the server will be calculated as 𝑃𝑈𝐵𝑆𝐸𝑅𝑉 = (𝑃𝑈𝐵𝑆𝐸𝑅𝑉1 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉2) =

(𝑔𝑝
𝑐 , 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑈𝐵𝑆𝐸𝑅𝑉). 

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In the case of requiring users to be restricted, a public/private key pair should be 

generated for the data owner as well. This key pair will be used within producing the signature for 

each index. This occurs when only certain authorized users must be able to produce the index. This 

digital signature can guarantee the server that the index is produced for the intended document. The 

public/private key pair is picked according to the used digital signature scheme.  

𝐝𝐏𝐄𝐊𝐒(𝐰, 𝑰𝑫𝒅𝒐𝒄 , 𝐏𝐔𝐁𝐒𝐄𝐑𝐕 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩): The DO produces an index for a keyword in 

order to enable searching capability for it. He accomplishes this action for every keyword in the 

document. Hence, the intended index is produced calling 𝐼 = 𝑑𝑃𝐸𝐾𝑆(𝑔𝑝, 𝑃𝑈𝐵𝑅𝐸𝐶  , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉1, 𝑤 ) 

function. Then if it is required for users to be restricted, the produced index will be merged with the 

document ID and signed using the data owner’s private key (𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐)). A MAC 

function can also be used instead of the digital signature, since the signature will be only verified 

on the authentication server side (𝐹(𝐾 , 𝐼 || 𝐼𝐷𝑑𝑜𝑐)). The value 𝐾 used in this function is a shared 

key between the data owner and the server, which can be calculated through Diffie-Hellman 

assumption. In the case of restricting users (using digital signature or MAC function), it is required 

to send the data owner’s ID to the cloud server along with the document and the indices set and the 

signature.  

𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor should be produced in order to perform 

searching for the intended keyword among the document. Hence, 

𝑑𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉1, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶  , 𝑊) function will be called.  

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘): Calling 𝑑𝑇𝑒𝑠𝑡(𝑔𝑝 , 𝐶 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2 , 𝑇𝑤) function, the test will be 

performed on cloud server side.  

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘): An additional function is used on 

the authentication server side in this scheme. This function is similar to the performed test on the 

storage server side and verifies the integrity of this test. The authentication server first obtains the 

data owner’s public key using his ID, and compares the index with his signature subsequently. If 
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these two components match, it checks the index and the trapdoor. Hence, it calculates the shared 

key between the server and itself (𝑲𝑬𝒀𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽 = (𝑷𝑼𝑩𝐒𝐄𝐑𝐕𝟏)𝑷𝑹𝑰𝑽𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽). Finally, 

𝒅𝑻𝒆𝒔𝒕(𝒈𝒑 , 𝑪 , 𝑲𝑬𝒀𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽 , 𝑻𝒘) function will be called. In the case of TRUE to be the result, 

the index matched the trapdoor and the server accomplished the comparison correctly.  

5.2. Proposed scheme based on SAE-I 

This section merges our proposed scheme with public key encryption scheme with a designated 

tester. It includes eight algorithms which are explained as follows. 

GlobalSetup(λ): Variables and functions needed within the steps ahead are produced in this step. 

Since the proposed scheme is an add-on for SAE-I scheme, this function calls the 𝑆𝐴𝐸 −

𝐼. 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝(𝜆)method. Furthermore, the generator 𝑔𝑝 will be chosen from 𝑍p. In the case of 

requiring users to be restricted, a MAC function or a digital signature will be picked.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): Similar to the previous scheme, a public/private key pair for the receiver is 

required in order to produce index and trapdoor. The same algorithm used for producing the 

receiver’s key pair in the SAE-I scheme is used in this scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑅𝐼𝑉  ) and (𝑃𝑈𝐵𝑅𝐸𝐶 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑈𝐵  ). 

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): Since the proposed scheme does not require a key to perform searching, 

the generated key pair will be only used to sign the result for the receiver  

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In this scheme the data owner’s key pair is required to produce trapdoor and index, 

and the key pair is required for signing the index as well. consequently, this key pair is produced 

through (𝑃𝑅𝐼𝑉𝐷𝑂 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑅𝐼𝑉  ) and (𝑃𝑈𝐵𝐷𝑂 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑈𝐵  ). 

𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(𝐰, 𝐈𝐃𝐝𝐨𝐜 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩): The trapdoor and its signature will be produced 

within this function through (𝐼 = 𝑆𝐴𝐸 − 𝐼. 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑃𝑈𝐵𝑅𝐸𝐶  , 𝑃𝑅𝐼𝑉𝐷𝑂, 𝑤 )) and 

(𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐)). The MAC function (𝐹(𝐾 , 𝐼 || 𝐼𝐷𝑑𝑜𝑐)) can be used as well.   

𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor is required in order to perform searching 

for the intended keyword among the document. Hence, 𝑆𝐴𝐸 − 𝐼. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑃𝑈𝐵𝐷𝑂 , 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑤 ) 

function will be called.  

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘): Calling   𝑆𝐴𝐸 − 𝐼. 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐼, 𝑇 )) function, the test will be 

performed on cloud server side.  

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘):  In this scheme, the authentication 

server checks matching between the trapdoor and the index calling 𝑺𝑨𝑬 − 𝑰. 𝑩𝒖𝒊𝒍𝒅𝑰𝒏𝒅𝒆𝒙(𝑰, 𝑻 )), 

after ensuring the integrity of signature. In the case of TRUE to be the result, the index matched the 

trapdoor and the server accomplished the comparison correctly.  

Proposed scheme merged with dPEKS 

In this section, our proposed scheme is merged with public key encryption scheme with a designated 

tester. It includes eight algorithms which are explained as follows. 
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GlobalSetup(λ): Variables and functions needed within the steps ahead are produced in this step. 

Since the proposed scheme is an add-on for dPEKS scheme, this function calls the 

dPEKS.GlobalSetup(λ) method. Furthermore, the generator 𝑔𝑝 will be picked among 𝑍p. In the case 

of requiring users to be restricted, a MAC function or a digital signature will be picked.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): This algorithm calculates key pair for the receiver. Everyone will obtain the 

receiver’s public key, and the data owner can encrypt documents and generate index using the 

receiver’s public key. Furthermore, user needs the private key to perform searching on his 

documents and decrypt them as well. In the proposed scheme, algorithm used for producing the 

receiver’s key pair is similar to the one used in the dPEKS scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 =

𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 and 𝑃𝑈𝐵𝑅𝐸𝐶 = 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝐸𝐶(𝑔𝑝). 𝑃𝑈𝐵𝑅𝐸𝐶 ). 

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): In the proposed scheme, a fourth entity, which must be trusted, is used in 

order to validate returned results from the server. Since this entity does not exist in dPEKS scheme, 

there is no key generator algorithm for it as well. Therefore, this algorithm is included in our 

proposed scheme. A private key is required for the tester through testing phase. Consequently, the 

key pair produced for the authentication server will be used in order to exchange key with the cloud 

server and to obtain this shared key in order to perform searching. Furthermore, the validation result 

of the search will be signed and sent to the receiver. A random number 𝑏 is picked among 𝑍p and 

will be considered as the data owner’s private key (𝑃𝑅𝐼𝑉AUTH−SERV =  𝑎). The public key will be 

calculated as 𝑃𝑈𝐵AUTH−SERV =  𝑔𝑝
𝑎 subsequently.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐒𝐄𝐑𝐕(𝐠𝐩): The key generator algorithm for the storage server in our proposed scheme is 

similar to the one included in dPEKS, except for some changes. A random number c is picked among 

𝑍p and the shared key between the storage server and the receiver will be calculated 

through𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 = (𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉1 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2) =   (c =

𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 , 𝑃𝑈𝐵AUTH−SERV
𝑐 

). Then the public key of server will be 

calculated as𝑃𝑈𝐵𝑆𝐸𝑅𝑉 = (𝑃𝑈𝐵𝑆𝐸𝑅𝑉1 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉2) = (𝑔𝑝
𝑐 , 𝑑𝑃𝐸𝐾𝑆. 𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝐸𝑅𝑉(𝑔𝑝). 𝑃𝑈𝐵𝑆𝐸𝑅𝑉). 

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In the case of requiring users to be restricted, a public/private key pair should be 

generated for the data owner as well. This key pair will be used within producing the signature for 

each index. This occurs when only certain authorized users must be able to produce the index. This 

digital signature can guarantee the server that the index is produced for the intended document. The 

public/private key pair is picked according to the used digital signature scheme.  

𝑩𝒖𝒊𝒍𝒅𝑻𝒂𝒃𝒍𝒆(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑫): 

The receiver calls 𝑑𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶  , 𝑊) function in order to create a trapdoor 

for each word in the dictionary for the first time. Afterwards, he sends the created trapdoors for the 

authentication server. After receiving the trapdoors, the authentication server generates a table with 

two columns. The first entity of each row represents the trapdoor, and the second one will be 

initialized with 0. 

𝐝𝐏𝐄𝐊𝐒(𝐰, 𝑰𝑫𝒅𝒐𝒄 , 𝐏𝐔𝐁𝐒𝐄𝐑𝐕 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩): The DO produces an index for a keyword in 

order to enable searching capability for it. He accomplishes this action for every keyword in the 

document. Hence, two random members of 𝑍𝑝
∗ will be picked (𝑟 , 𝑟′  ∈ 𝑍𝑝

∗) , then the intended 

index will be produced through 𝐼 =  (𝐼1 , 𝐼2, 𝐼3) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝑔𝑟′
, 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)𝑟))

𝑟′

) 
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function. Afterwards, if it is required for users to be restricted, the produced index will be merged 

with the document ID and signed using the data owner’s private key (𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐)). The 

index will be sent to the server along with the signature subsequently. Finally, 𝑟′ will be 

authenticated with the public key of the server (𝐸𝑛𝑐𝑃𝑈𝐵AUTH−SERV
(𝑟′)) and result value will be sent 

to the authentication server along with the index and its signature.   

𝐔𝐩𝐝𝐚𝐭𝐞𝐓𝐚𝐛𝐥𝐞(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘): 

Receiving the index, the authentication server first determines to which trapdoor it belongs. In order 

to achieve this aim, the authentication server first calculates the shared key between server and itself 

through 𝐾𝐸𝑌𝐴𝑈𝑇𝐻−𝑆𝐸𝑅𝑉 = (𝑃𝑈𝐵SERV1)𝑃𝑅𝐼𝑉𝐴𝑈𝑇𝐻−𝑆𝐸𝑅𝑉  . Following that, it performs testing through 

calling 𝑑𝑇𝑒𝑠𝑡(𝑔𝑝 , 𝐶 , 𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉 , 𝑇𝑤) and determines to which trapdoor the received index belongs. 

When the related trapdoor is recognized, the value of sum attribute associated with its entity will be 

added to the value of 𝑟′ (𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑟′). 

 𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor should be produced in order to perform 

searching for the intended keyword among the document. Hence, 

𝑑𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉1, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶  , 𝑊) function will be called.  

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘):  

In order to perform testing, the server first calculates t = 
T2

H1(T1
PRIVSERV2

 )
 and in the case the following 

equation was true, the quested word is the i-th word and the server returns it to the user. 

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘): After receiving results, user sends 

them along with his trapdoor to the authentication server in order to authenticate them. After 

receiving the receiver’s request by the authentication server, it verifies signatures of indices. In the 

case of the signatures to be valid, it performs testing to determine the received trapdoor matches 

which trapdoor saved in the table. Afterwards, it calls the test function 

(𝒅𝑻𝒆𝒔𝒕(𝒈𝒑 , 𝑰 , 𝑲𝑬𝒀𝑨𝑼𝑻𝑯−𝑺𝑬𝑹𝑽 , 𝑻𝒘)) with the shared key for each existing index. In the case of 

TRUE to be the result, the index matches the trapdoor and the server accomplished the comparison 

correctly. It verifies the ∏ 𝑰𝟐 ==  𝒈𝒔𝒖𝒎 equation to ensure all indices are returned by the server. 

All of them are sent correctly if the equation is true.  

Proposed scheme based on SAE-I 

This section merges our proposed scheme with public key encryption scheme with a designated 

tester. It includes eight algorithms which are explained as follows. 

GlobalSetup(λ): Variables and functions needed within the steps ahead are produced in this step. 

Since the proposed scheme is an add-on for the SAE-I scheme, this function calls the 𝑆𝐴𝐸 −

𝐼. 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑒𝑡𝑢𝑝(𝜆)method. Furthermore, the generator 𝑔𝑝 will be picked among 𝑍p. In the case of 

requiring users to be restricted, a MAC function or a digital signature will be picked.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐑𝐄𝐂(𝐠𝐩): Similar to the previous scheme, a public/private key pair for the receiver is 

required in order to produce index and trapdoor. The same algorithm used for producing the 

𝑒(𝐼3, 𝑔) == 𝑒(𝐻2(𝑒(𝐼1 , 𝑡𝑃𝑅𝐼𝑉𝑆𝐸𝑅𝑉2), 𝐼2) 

 

(1) 
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receiver’s key pair in SAE-I scheme is used in this scheme. (𝑃𝑅𝐼𝑉𝑅𝐸𝐶 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑅𝐼𝑉  ) and (𝑃𝑈𝐵𝑅𝐸𝐶 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑅𝐸𝐶). 𝑅𝐸𝐶𝑃𝑈𝐵  ). 

𝐊𝐞𝐲𝐆𝐞𝐧𝐀𝐔𝐓𝐇−𝐒𝐄𝐑𝐕(𝐠𝐩): Since the proposed scheme does not require a key to perform searching, 

the generated key pair will be used for encrypting and decrypting the data owner’s messages (the 

value of 𝑟) and signing the result.  

𝐊𝐞𝐲𝐆𝐞𝐧𝐃𝐎(𝐠𝐩): In this scheme the data owner’s key pair is required to produce trapdoor and index, 

and the key pair is required for signing the index as well. consequently, this key pair will be 

generated through (𝑃𝑅𝐼𝑉𝐷𝑂 = SAE − I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑅𝐼𝑉  ) and (𝑃𝑈𝐵𝐷𝑂 = SAE −

I. 𝐾𝑒𝑦𝐺𝑒𝑛(𝐷𝑂). 𝐷𝑂𝑃𝑈𝐵  ). 

𝑩𝒖𝒊𝒍𝒅𝑻𝒂𝒃𝒍𝒆(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑫): The receiver calls 

𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝑃𝑈𝐵𝑆𝐸𝑅𝑉, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶  , 𝑊) function in order to create a trapdoor for each word in the 

dictionary (D) for the first time. Afterwards, he sends the created trapdoors for the authentication 

server. After receiving the trapdoors, the authentication server generates a table with two columns. 

The first entity of each row represents the trapdoor, and the second one (sum attribute) will be 

initialized with 0. 

𝐁𝐮𝐢𝐥𝐝𝐈𝐧𝐝𝐞𝐱(𝐰, 𝐈𝐃𝐝𝐨𝐜 , 𝐏𝐑𝐈𝐕𝐃𝐎 , 𝐏𝐔𝐁𝐑𝐄𝐂, 𝐠𝐩):  

A random number r is picked among   𝑍𝑝
∗ in order to create the index through 𝐼 = [I1 , I2] =

 [𝑔𝑟 , (𝑆𝐴𝐸 − 𝐼. 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑃𝑈𝐵𝑅𝐸𝐶  , 𝑃𝑅𝐼𝑉𝐷𝑂, 𝑤 ))𝑟]. Subsequently, the index will be 

concatenated with ID of the document ( (𝑠𝑖𝑔𝑛𝑷𝑹𝑰𝑽𝑫𝑶
(𝐼 || 𝐼𝐷𝑑𝑜𝑐))) and r will be encrypted with the 

public key of the authentication server (𝐸𝑛𝑐𝑃𝑈𝐵AUTH−SERV
(𝑟)). Finally, the indices will be sent to the 

cloud server along with their signatures, and the encrypted r value will be sent to the authentication 

server along with the index and its signature. 

𝐔𝐩𝐝𝐚𝐭𝐞𝐓𝐚𝐛𝐥𝐞(𝐠𝐩 , 𝐂 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝑻𝒘): 

Receiving the index, the authentication server first authenticates it using the signature, and then 

determines to which trapdoor it belongs. In order to achieve this aim, the authentication server 

performs testing through calling 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑔𝑝 , 𝐾𝐸𝑌𝐴𝑈𝑇𝐻−𝑆𝐸𝑅𝑉, 𝑃𝑅𝐼𝑉𝑅𝐸𝐶  , 𝑊) and determines to 

which trapdoor the received index belongs. Subsequently, the value of sum attribute associated with 

its entity will be added to the value of r (𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑟′). 

𝒅𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝒈𝒑 , 𝑷𝑼𝑩𝑺𝑬𝑹𝑽, 𝑷𝑹𝑰𝑽𝑹𝑬𝑪 , 𝑾): A trapdoor is required in order to perform searching 

for the intended keyword among the document. Hence, 𝑆𝐴𝐸 − 𝐼. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑃𝑈𝐵𝐷𝑂 , 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑤 ) 

function will be called. The final trapdoor will be generated through 

in which  𝑟′ is a random number among 𝑍𝑝
∗. Finally, the trapdoor will be sent to the server.  

𝐝𝐓𝐞𝐬𝐭(𝐠𝐩 , 𝐂 , 𝑻𝒘): Verifying 𝑒(I1 , T2) == 𝑒(T1 , I2) equation, the test will be performed on cloud 

server side. In the case of TRUE to be the result, the index, its signature and the related document 

will be sent to the receiver as the result. 

𝐂𝐡𝐞𝐜𝐤(𝐠𝐩 , 𝐈𝐧𝐝𝐞𝐱, 𝐒𝐢𝐠𝐧𝐞𝐝 − 𝐈𝐧𝐝𝐞𝐱 , 𝑷𝑹𝑰𝑽𝑺𝑬𝑹𝑽 , 𝐈𝐃𝑫𝑶 , 𝑻𝒘):  After receiving results from the 

cloud server, user sends them along with his trapdoor to the authentication server in order to 

Tw = [T1 , T2] =  [𝑔𝑟′
 , (𝑆𝐴𝐸 − 𝐼. 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑃𝑈𝐵𝐷𝑂 , 𝑃𝑅𝐼𝑉𝑅𝐸𝐶 , 𝑤 ))𝑟′

] (2) 
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authenticate them. After verifying the receiver’s signature by the authentication server and in the 

case of the signature to be valid, it performs testing to determine which trapdoor saved in the table 

matched the received trapdoor. Afterwards, it calls the test function 𝑻𝒆𝒔𝒕(𝒈𝒑 , 𝑰  , 𝑻𝒘) for each 

existing index in order to ensure all indices match the received trapdoors. It subsequently verifies 

the ∏ 𝑰𝟏 ==  𝒈𝒔𝒖𝒎 equation to ensure all indices are returned by the server. All of the documents 

are sent correctly if the equation is true.  

6. Security and Performance Analysis of the Scheme 

This section provides a comprehensive analysis of the proposed scheme from both security and 

performance perspectives. The analysis highlights the strengths of the scheme in terms of security 

guarantees and efficiency, while also addressing potential limitations. 

6.1. Performance and Efficiency analysis 

The proposed scheme introduces minimal overhead while providing robust validation mechanisms 

for returned results. The efficiency of the scheme can be analyzed based on the following key 

aspects: 

Trapdoor Generation and Testing: The generation of trapdoors by the user and the execution of 

the test function by the server are computationally efficient. These operations are consistent with 

the original dPEKS and SAE-I schemes, ensuring that the proposed scheme does not introduce 

significant computational overhead during these critical steps. The types and number of operations 

required within each step of two proposed will be explained as follows. Besides the operations of 

index generation in dPEKS, the index generation phase of the first scheme needs a digital signature 

operation per keyword. The shared key can be generated through one exponential function, and the 

digital signature operation can be done through a MAC function per keyword. Therefore, if a 

document has 𝑤 keywords, besides the operations of index generation in dPEKS, 𝑤 digital 

signatures or an exponential function are required along with 𝑤 times of performing MAC function. 

The operations required for index generation in dPEKS comprise two hash functions, two 

exponential functions, and one bilinear mapping per word. Hence, total operations required within 

index generation for a document which has 𝑤 keywords comprise 2𝑤 hash functions, 2𝑤 

exponential functions, 𝑤 bilinear mappings and 𝑤 digital signatures, or alternatively, 2𝑤 hash 

functions, 2𝑤 + 1 exponential functions, 𝑤 bilinear mappings and 𝑤 times of performing MAC 

function. 

Producing the trapdoor and performing the test function on the server-side are similar to the dPEKS 

scheme. Hence, three exponential functions and two hash functions are required within the trapdoor 

generation phase. Additionally, performing the test on the server-side requires a bilinear mapping, 

two exponential functions and two hash functions per each index existing on the server-side. If 𝐷 

documents exist on the server, each of which has 𝑤𝑎𝑣𝑔 keywords (indices) moderately, the number 

of indices existing on the server will be 𝑤𝑎𝑣𝑔. 𝐷. Hence, this phase requires 𝑤𝑎𝑣𝑔. 𝐷 bilinear 

mappings, 2. 𝑤𝑎𝑣𝑔. 𝐷 exponential functions and 2. 𝑤𝑎𝑣𝑔. 𝐷 hash functions. The proposed scheme 

includes an additional phase apart from the dPEKS which performs the verification of returned 

results. This phase is similar to the test function of the dPEKS, except for one more exponential 
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function. Hence, if 𝐷𝑟𝑒𝑡 documents are returned by the server, the required operations will be 𝐷𝑟𝑒𝑡 

bilinear mappings, 2. 𝐷𝑟𝑒𝑡 + 1 exponential functions and 2. 𝐷𝑟𝑒𝑡 hash functions.  

Operating the SAE-I within the index generation phase of the first proposed scheme, when the 

document contains 𝑤 keywords, requires 2𝑤 hash function, 𝑤 exponential functions, 𝑤 bilinear 

mappings and 𝑤 digital signatures, or alternatively, 2𝑤 hash functions, 𝑤 + 1 exponential 

functions, 𝑤 bilinear mappings and 𝑤 times of performing MAC function. Producing the trapdoor 

and performing the test function on the server-side are similar to the SAE-I scheme. Hence, one 

exponential function, one bilinear mapping and two hash functions are required within the trapdoor 

generation phase. Additionally, performing the test on the server-side is operated in 𝑂(1) order of 

time and verification of returned documents is operated in 𝑂(1) order of time as well. 

 Operating the dPEKS within the second proposed scheme requires one bilinear mapping, four 

exponential functions among 𝐺1, one digital signature or MAC function, and two hash functions per 

each index generation. Hence, if the document contains 𝑤 keywords, the required operations will 

be 2𝑤 hash function, 4𝑤 exponential functions, 𝑤 bilinear mappings and 𝑤 digital signatures, or 

alternatively, 2𝑤 hash functions, 4𝑤 + 1 exponential functions, 𝑤 bilinear mappings and 𝑤 times 

of performing MAC function. Producing the trapdoor is similar to the dPEKS scheme. Hence, three 

exponential functions and two hash functions are required within the trapdoor generation phase. 

Additionally, performing each test function requires three bilinear mappings, two exponential 

functions and one division among 𝐺1, and two hash functions. If 𝑤𝑎𝑣𝑔. 𝐷 indices exist on the server, 

this phase requires 3. 𝑤𝑎𝑣𝑔. 𝐷 bilinear mappings, 2. 𝑤𝑎𝑣𝑔. 𝐷 exponential functions and 2. 𝑤𝑎𝑣𝑔. 𝐷 

hash functions. Moreover, performing the BuildTable function requires generating a trapdoor per 

each keyword in the dictionary by the receiver. Hence, if 𝑤𝐷𝑖𝑐𝑡 words exist in the dictionary, this 

phase requires 3. 𝑤𝐷𝑖𝑐𝑡 exponential functions and 2. 𝑤𝐷𝑖𝑐𝑡 hash functions. Additionally, updating 

the table (UpdateTable) requires performing the test function up to the number of all keywords in 

the dictionary per each index. Hence, the worst-case of operating this phase requires 3. 𝑤𝐷𝑖𝑐𝑡. 𝑤 

bilinear mappings, 2. 𝑤𝐷𝑖𝑐𝑡 . 𝑤 exponential operations and 2. 𝑤𝐷𝑖𝑐𝑡. 𝑤 hash functions.  

Operating the SAE-I within the second proposed scheme, when the document contains 𝑤 keywords, 

requires 2𝑤 hash function, 3𝑤 exponential functions, 𝑤 bilinear mappings and 𝑤 digital signatures, 

or alternatively, 2𝑤 hash functions, 3𝑤 + 1 exponential functions, 𝑤 bilinear mappings and 𝑤 times 

of performing MAC function. The required operations for producing the trapdoor are similar to the 

previous step. Hence, the trapdoor generation phase requires three exponential functions and two 

hash functions. If 𝑤𝑎𝑣𝑔. 𝐷 indices exist on the server, operating the test phase requires 2. 𝑤𝑎𝑣𝑔. 𝐷 

bilinear mappings and verification requires 2. 𝑤𝑟𝑒𝑡 bilinear mappings. Moreover, performing the 

BuildTable function requires and 2. 𝑤𝐷𝑖𝑐𝑡 hash functions, 3. 𝑤𝐷𝑖𝑐𝑡 exponential functions and 𝑤𝐷𝑖𝑐𝑡 

bilinear mappings. Additionally, the worst-case of operating the phase of updating the table 

(UpdateTable) requires 2. 𝑤𝐷𝑖𝑐𝑡. 𝑤 bilinear mappings.  

Scalability: The proposed scheme is designed to scale effectively in environments with multiple 

servers. By leveraging the Diffie-Hellman key exchange, the scheme allows multiple servers to 

perform testing collaboratively, reducing the search time and improving overall system 

performance. This is particularly beneficial in large-scale cloud environments where search 

operations are frequent and resource-intensive. 
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Storage Overhead: The scheme requires additional storage for digital signatures or MAC values 

associated with each index. However, this storage overhead is minimal compared to the security 

benefits it provides. The use of hash tables for storing indices further optimizes the search process, 

ensuring that the validation can be performed in constant time O (1). 

Table 1 compares the required operations of the proposed schemes with other schemes, and Table 2 

compares the performance of them. There are some symbols and notions in Table 1 which are as 

follows: the symbols 𝑒 and ℎ show exponential functions and hash functions respectively; 𝑝𝑝
𝑠 marks 

the symmetric bilinear mapping; performing the MAC function is marked as 𝑀𝐴𝐶; and 𝑚𝑢𝑙𝑡 is used 

to show the multiplication operation. In summary, the proposed scheme achieves a balance between 

security and efficiency. While it introduces some additional computational and storage costs, these 

are justified by the enhanced security guarantees and the ability to validate the integrity of returned 

results. 

Table 1. The number of required operations for the proposed schemes is compared to that of other schemes. 
Updating 

table 
Building 

table 
Verification Searching by 

server 
Trapdoor 

Generation 
Encryption Scheme 

- - - 𝑤𝑎𝑣𝑔. 𝐷. (ℎ + 𝑝𝑝
𝑠) ℎ + 𝑒 𝑤(2𝑒 + 2ℎ 

+ 𝑝𝑝
𝑠) 

PEKS 

- - - 𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 + 2ℎ

+ 𝑝𝑝
𝑠) 

3𝑒 + 2ℎ 𝑤(2𝑒 + 2ℎ
+ 𝑝𝑝

𝑠) 
dPEKS 

- - - 𝑂(1) 2ℎ + 𝑒
+ 𝑝𝑝

𝑠  
𝑤(2ℎ + 𝑒
+ 𝑝𝑝

𝑠) 
SAE-I 

- - (𝐷𝑟𝑒𝑡 + 1). 𝑀𝑢𝑙𝑡 + 𝑒 𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 +

2ℎ + 𝑝𝑝
𝑠) + 𝑒 +

𝐷𝑟𝑒𝑡. 𝑀𝑢𝑙𝑡  

3𝑒 + 2ℎ 𝑤(3𝑒 + 3ℎ 

+ 𝑝𝑝
𝑠) 

[27] 

- - 𝐷𝑟𝑒𝑡. (2𝑒 + 2ℎ + 𝑝𝑝
𝑠)

+ 𝑒 

𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 + 2ℎ

+ 𝑝𝑝
𝑠) 

3𝑒 + 2ℎ 𝑤(2𝑒 + 2ℎ 

+ 𝑝𝑝
𝑠 + 𝑀𝐴𝐶)

+ 𝑒 

The first 

scheme merged 

with dPEKS 

- - 𝑂(1) 𝑂(1) 2ℎ + 𝑒
+ 𝑝𝑝

𝑠  
𝑤(2ℎ + 𝑒

+ 𝑝𝑝
𝑠 + 𝑀𝐴𝐶)

+ 𝑒 

The first 

scheme based 

on SAE-I 

𝑤𝐷𝑖𝑐𝑡 . 𝑤(2𝑒
+ 2ℎ
+ 3𝑝𝑝

𝑠) 

𝑤𝐷𝑖𝑐𝑡(3𝑒
+ 2ℎ) 

𝐷𝑟𝑒𝑡. (2𝑒 + 2ℎ +

3𝑝𝑝
𝑠) + 𝑒  

𝑤𝑎𝑣𝑔. 𝐷. (2𝑒 + 2ℎ

+ 3𝑝𝑝
𝑠) 

3𝑒 + 2ℎ 𝑤(4𝑒 + 2ℎ 

+ 𝑝𝑝
𝑠 + 𝑀𝐴𝐶)

+ 𝑒 

The second 

scheme merged 

with dPEKS 

2. 𝑤𝐷𝑖𝑐𝑡 . 𝑤. 𝑝𝑝
𝑠 𝑤𝐷𝑖𝑐𝑡(2ℎ

+ 3𝑒
+ 𝑝𝑝

𝑠) 

2. 𝐷𝑟𝑒𝑡 . 𝑝𝑝
𝑠 2. 𝑤𝑎𝑣𝑔. 𝐷. 𝑝𝑝

𝑠 2ℎ + 𝑒
+ 𝑝𝑝

𝑠  
𝑤(2ℎ + 3𝑒
+ 𝑝𝑝

𝑠) 
The second 

scheme based 

on SAE-I 

 

Table 2. The performance of the proposed schemes is compared to that of other schemes. 

Adapting 

with 

organization 

circumstances 

Capability 

of 

processing 

by 

multiple 

servers 

Fair 

payment 

Capability 

of 

detecting 

file 

removal 

Verification 

of received 

results 
Publicity IKGA attack 

KGA 

attack 
Scheme 

        PEKS 

      
In case of 

utilizing [34] 
 dPEKS 

        SAE-I 

        [26] 

      
In case of 

utilizing [34]  [27] 

        [29] 

      
In case of 

utilizing [34]  [33] 

      
In case of 

utilizing [34] 

or SAE-I 
 First 

scheme 

      
In case of 

utilizing [34] 

or SAE-I 
 Second 

scheme 
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6.2. Security analysis 

The proposed schemes build upon the security foundations of the dPEKS and SAE-I schemes while 

introducing additional mechanisms to ensure the integrity of returned results. The security analysis 

focuses on the following key aspects: 

Protection Against Malicious Servers: The primary objective of the proposed scheme is to prevent 

malicious servers from returning incorrect or manipulated results. By concatenating the index with 

the document ID and signing it, the scheme ensures that the server cannot forge or modify the 

indices. This mechanism guarantees that only valid, authenticated indices are returned to the user. 

Resistance to Keyword Guessing Attacks: The scheme is designed to resist both offline and online 

keyword guessing attacks. By limiting the test function to the server and requiring the server's 

private key for testing, the scheme prevents external attackers from performing offline keyword 

guessing. Additionally, the use of digital signatures ensures that even if an attacker intercepts a 

trapdoor, they cannot generate a valid index without the data owner's private key. 

Resistance to Injection Attacks: The scheme is resistant to injection attacks, where an external 

attacker attempts to inject malicious indices into the system. By requiring digital signatures for each 

index, the scheme ensures that only indices generated by authorized data owners are accepted. 

The security of the second proposed scheme is analyzed in this section utilizing the dPEKS scheme. 

The security requirements of this scheme are stated as follows: 

• An external intruder should be unable to recognize for which word an index has been 

generated by the user.  

• An external intruder should be unable to recognize for which word the eavesdropped index 

has been generated.  

• Having the public keys of the authentication server and the storage server, an external intruder 

should be unable to obtain the shared key between them.  

• Having a shared key with the storage server, an authentication server should not be able to 

obtain the shared key between the storage server and another authentication server. Therefore, 

the authentication server will not be able to perform tests unassociated with itself (e.g. other 

zones of the organization). 

• Having a shared key with the authentication server, a storage server should not be able to 

obtain the shared key between the authentication server and another storage server. Therefore, 

the storage server will not be able to perform tests unassociated with itself (e.g. data locating 

on another server). 

The three last security requirements are fulfilled due to utilizing the Diffie-Hellman key exchange 

method, which method has the following characteristics: 

• It is not possible to calculate 𝑔𝑎𝑏 during a polynomial time, knowing only 𝑔𝑎 and 𝑔𝑏 without 

𝑎 or 𝑏. Hence, it is required for an intruder to have 𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 or 𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 in order to be 

able to calculate the shared key between the authentication server and the storage server as 

𝑔𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 . Since he has none of these values, he cannot obtain the shared key.  

• Considering a communication between three users 𝑎, 𝑏, 𝑐 utilizing the Diffie-Hellman key 

exchange method, if they have three shred keys for mutual communications, i.e. 𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑏, 

𝑔𝑃𝑅𝐼𝑉𝑏 .𝑃𝑅𝐼𝑉𝑐 and 𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑐, the user 𝑐, who does not have 𝑃𝑅𝐼𝑉𝑎 and 𝑃𝑅𝐼𝑉𝑏, cannot 

calculate the value of 𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑏 having his own private key and two shared keys i.e. 
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𝑔𝑃𝑅𝐼𝑉𝑎 .𝑃𝑅𝐼𝑉𝑐 and 𝑔𝑃𝑅𝐼𝑉𝑏 .𝑃𝑅𝐼𝑉𝑐. Therefore, the authentication server 1 cannot access the shared 

key between the storage server and the authentication server 2 (𝑔𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣2 ) 

utilizing 𝑔𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣1 . Similarly, the storage server 1 cannot access the shared key 

between the authentication server and the storage server 2 (𝑔𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣2 ) utilizing 

𝑔𝑃𝑅𝐼𝑉𝑎𝑢𝑡−𝑠𝑒𝑟𝑣 .𝑃𝑅𝐼𝑉𝑠𝑒𝑟𝑣1 . 

According to the two mentioned characteristics, the three last attacks are not feasible. Since trapdoor 

generation in the proposed scheme is similar to the trapdoor generation algorithm of the dPEKS 

scheme, the security of the proposed scheme against the mentioned attacks is similar to the one of 

the dPEKS. The security of the proposed scheme against the first attack will be described as follows: 

Proving the security of indices in this scheme is performed through a security game which is 

illustrated in Figure 3. There are two parties in this game who are the attacker and the challenger. 

The attacker intends to realize for which keyword his obtained index has been generated, and the 

challenger generates keys and indices. The game is played as follows: 

 
Figure 4. The presented Security game scheme  

 

• First, the challenger performs the 𝑆𝑒𝑡𝑢𝑝(𝑘) algorithm in order to produce the required 

parameters. Afterwards, he generates public and private key-pairs for the receiver and the 

authentication server by performing 𝐾𝑒𝑦𝐺𝑒𝑛REC(𝑔𝑝) and 𝐾𝑒𝑦𝐺𝑒𝑛SERV(𝑔𝑝) algorithms, and 

generates the index for his intended keyword utilizing these two key-pairs. 

• In the second step, an attacker requests the challenger to generate indices for a number of his 

intended keywords (𝑤1 , 𝑤2 , … , 𝑤𝑞). 

• The challenger calls the function 𝐵𝑢𝑖𝑙𝑑 − 𝐼𝑛𝑑𝑒𝑥(𝑤𝑖, 𝑃𝑈𝐵𝑆𝐸𝑅𝑉 , 𝑃𝑈𝐵𝑅𝐸𝐶 , 𝑔𝑝) in order to 

generate indices, and sends them to the attacker subsequently. 

• The attacker picks two keywords and sends them to the challenger. 

• The challenger selects one of the two received keywords and generates an index for it, and 

sends the index for the attacker.  

• Here, the attacker has to recognize to which word the received index belongs.  

It can be easily proved that the adversary’s advantage of the proposed algorithm is lower than the 

adversary’s advantage of recognizing the word associated with the generated index using the 

dPEKS. Hence, if an attacker can solve it with the advantage 𝜀, he can recognize the word associated 

with the generated index using the dPEKS with a higher advantage. Therefore, the adversary’s 

advantage of this algorithm is negligible since it is proven in [15] that the adversary’s advantage of 

recognizing the word associated with the generated index using the dPEKS is negligible. it is 
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explained as follows that the adversary’s advantage of the proposed algorithm is lower than the 

adversary’s advantage of the dPEKS: 

If an algorithm exists that is able to guess the word 𝑤𝑖 having a submitted index 

(((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝑔𝑟′
, 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)

𝑟))
𝑟′

)), an attacker will be able to send the trapdoor 

(𝐼′  =  (𝐼′
1 , 𝐼′

2, 𝐼′
3) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝑔, 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)

𝑟)))) to the oracle by inserting 

𝑟′ = 1. This is despite the fact that the eavesdropped trapdoor, which is generated through the 

dPEKS, 𝐼 =  (𝐼1, 𝐼2) = ((𝑃𝑈𝐵𝑅𝐸𝐶)𝑟 , 𝐻3(𝑒(𝑃𝑈𝐵𝑆𝐸𝑅𝑉2 , 𝐻2(𝑤𝑖)
𝑟))) is . In other words, it is enough 

to send the index as 𝐼′  =  (𝐼1 , 𝑔, 𝐼2) to the oracle after eavesdropping it, and send the word returned 

by the oracle to the challenger.  

7. Conclusions 

In this study, we presented a novel method for validating the integrity of results returned from a 

cloud server in asymmetric searchable encryption schemes. Our approach leverages the Diffie-

Hellman key exchange and digital signatures to ensure that the server cannot return data with 

incorrect or manipulated indices. This is achieved by concatenating the index with the document ID 

and signing it, ensuring that the server cannot forge or manipulate the indices. However, it is 

important to note that this scheme is most effective when the server is expected to return all relevant 

documents. In scenarios where the server may skip certain documents due to resource constraints, 

the scheme's effectiveness may be limited. This method is particularly effective in scenarios where 

the server may act maliciously/ maliciously/honest but curious or where data integrity is a critical 

concern. The proposed scheme introduces minimal overhead, requiring only a digital signature or 

an additional MAC function per keyword. Importantly, the generation of trapdoors by users and the 

execution of the test function remain efficient, with no significant performance degradation. The 

validation process, performed by the authentication server, involves a digital signature verification, 

an exponential function, and a dPEKS test function, ensuring that the returned results are both 

accurate and trustworthy. Furthermore, the proposed shared key mechanism can be extended to the 

dPEKS scheme, enabling multiple servers to perform testing collaboratively. This extension 

enhances the scalability and flexibility of the system, making it suitable for larger, distributed 

environments. 
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