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1. Introduction

Nonlinear partial differential equations (NLPDES) are a significant tool in mathematical modeling
to provide an effective framework for studying processes that evolve over time and change across
spatial dimensions [1]. NLPDEs are utilized across numerous scientific and engineering
disciplines, including fluid dynamics, heat transfer, quantum mechanics, and wave propagation.
To tackle these complex problems, a mix of numerical and analytical approaches, such as finite
element methods, finite difference, Fourier analysis and separation of variables, is often employed
[2,3]. These techniques enable the study of complex systems where exact analytical solutions are
difficult or impossible to derive. As a result, an understanding of PDE theory along its
applications is important for professionals and researchers in various fields, empowering them to
explore and solve real-world problems in both natural and engineered systems [4,5].

Stochastic partial differential equations (SPDESs) provide a mathematical framework for making
systems influenced by random variations and are widely used in different fields such as physics,
economics, biology, and engineering, where uncertainty has a significant role [6,7]. Unlike other
differential equations, SDEs have stochastic processes, making the evolution of the system more
unpredictable. This unpredictability can come from different sources such as economic
fluctuations, biological inefficiencies or environmental noise, SDEs analyze how both
deterministic and random factors interact to influence system behavior. A critical aspect of SDEs
is Itd calculus, which provides the tools to work with stochastic integrals and differentials, along
with the concepts of strong and weak solutions that describe different scenarios of system
behavior. Understanding the mathematical properties of SDEs with their practical applications,
sets the stage for deeper investigation of this area of mathematics [8,9]. The Wiener process is a
key mathematical model for presenting random fluctuations to offer insights into the variability
and behavior of systems across fields like engineering, finance and physics. Its properties, such as
self-similarity and its Gaussian distribution, make it valuable for modeling a variety of stochastic
phenomena. The Wiener process is important for studying how randomness influences system
dynamics and is foundational for predicting and understanding variations in many applications.
The Wiener process is crucial for investigating the role of randomness in improving system
performance and optimizing processes [10-13]. The discovery of optical solitons, their self-
reinforcing nature and stability have led to many breakthroughs and performance improvements
over the last few decades [14-16]. Several sophisticated mathematical approaches have been
developed to describe and manipulate solitons, including the sine-cosine, sinh-cosh methods,
Kudryashov method, advanced forms like the Hirota bilinear method and many others. Over time,
different types of solitons have been identified, including dispersion-managed solitons, cubic-
quartic solitons and non-Kerr solitons [17-21]. These developments have also uncovered new
phenomena like unique forms of self-phase modulation. The exploration of solitons has spurred a
steady stream of innovative ideas and continuously enhancing our understanding and application
of these waves. Many governing models are used for studying soliton propagation in optical
fibers. A recent innovation in this area involves combining established models to create new
approaches that can more effectively manage soliton dynamics over intercontinental distances.
One such model, which has gained attention in nonlinear fiber optics, integrates three well-known
equations: the nonlinear Schrédinger equation (NLSE), the Sasa—Satsuma equation (SSE) and the
Lakshmanan—Porsezian—Daniel (LPD) model. A lot of research has been conducted on this
combined model, exploring various aspects in detail. The concatenated model has been analyzed
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using the Painlevé approach, and optical solitons have been derived within its framework. These
studies have examined soliton behavior in birefringent fibers under this model, and the
incorporation of power-law nonlinearities has also been explored. The NLSE is widely recognized
as a mathematical equation used to explain the behavior of slow wave packets in many nonlinear
wave systems and has significant applications in fields such as condensed matter physics,
nonlinear optics, and other areas of physical science [21-23]. As scientific developments continue
and research deepens, more complex models are required to accurately represent real-world
nonlinear phenomena. Consequently, the standard NLSE has been expanded to include versions
with variable coefficients, multi-dimensional forms, non-local effects, higher-order terms,
fractional orders, and even combinations of these extensions. Recently, Wang explored a novel
(3+1)-dimensional sine-Gordon and sinh-Gordon equation derived from an extended (3+1)-
dimensional zero curvature equation [24]. In this paper, we aim to derive a extended (3+1)-
dimensional Schrodinger equation in the sense of noise term [25]. We applied Sardar sub-equation
method to derive the soliton solution of the equation in the form of dark, bright, singular, and
periodic-singular solutions [26]. The main objective of this study is to thoroughly explore the
dynamics described by the extended (3+1)-dimensional stochastic NLSE. The process starts by
using the Galilean transformation to lead the derivation of the associated dynamical system. The
Galilean transformation facilitates the transition from a moving reference frame to a stationary one
by converting NLPDEs into ODEs. This permits the spatial derivative terms in the original
NLPDEs to be expressed as time derivatives and simplifying the mathematical process to enable
easier solutions of the obtained ODE system.

The paper also applies the established theory of planar dynamical systems to perform a detailed
bifurcation analysis, which expose the complex behaviors exhibited by the system. This analysis
delves into the investigation of chaotic dynamics in the model and to achieve this, an external term
is added into the dynamical system. The investigation of chaotic behavior is analyzed with the aid
2D and 3D phase portraits which provide a thorough understanding of the system's intricate
dynamics [28,29]. Furthermore, the Runge—Kutta method is employed to conduct a sensitivity
analysis of the system which ensure the stability of the solutions against small perturbations in
initial conditions. By introducing slight variations and evaluating their effects on stability, the
reliability and consistency of the derived solutions are validated. By linearizing the system near
equilibrium solutions, the stability of critical points is also investigated. Notably, this study
highlights its originality and emphasizing that such an investigation has not previously been
conducted for the system in question.

2. Mathematical model

In this work, the extended (3 + 1)-dimensional stochastic nonlinear Schrodinger equation (NLSE)
to be considered is given by [25]

awe _

pm o))

iu, — (aluxx + auyy, + a3y, + 205Uy — 25Uy, — 2a6uyz) + blul*u +ou

These coefficients a;,(l = 1,2,3,4,5,6),b are constants. The role of o is to signify the

coefficient of noise strength, while W (t) corresponds to the standard Wiener process, and —dw;t(t)

expresses the white noise. When o = 0, we have the Wang equation [24]. Ifa; = —a,0 = a, =
az = a, = as = ag = 0, we give the NLSE [30].
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3. Mathematical analysis
To kick off, the following hypothesis is picked [25,31]
u(x' Y, Z, t) = P(f)ei(p(x‘y‘z‘t) 4 (2)

Where P (&) represent the shape of the pulse and

fZle+Bzy+B3Z—Vt, (3)
Where
V = 231(a1K1 + a4K2 - a5K3) + 232((12’{2 + a4K1 - a6K3) + 233((13}(3 - a5K1 - a6K2 ), (4)

and the phase component is defined as
D(x,y,2z,t) = —K1X — Ky — k3Z — 02t + oW (t) + wt + 0, (5)

Here, k4, k4, k5 , are the soliton frequency, w is the wave number, while o corresponds to the noise
coefficient and 6 is the phase constant. Substituting Egs. (2),(3),(4) and (5) into Eq.(1) and
decomposing into real and imaginary parts ,give

—LP” — (w — 02 — S)P + bP* = 0, (6)
Where

L =a,B? + a,B? + azB? + 2a,B,B, — 2asB,B; — 2a4B,B;, )
And

S = a;k? + ayk3 + azk? + 2a40K,ky — 205K K3 — 20gK,Ks. 8

The Sardar- sub-equation procedure

The Sardar —Sub-equation method is very effective to derive the exact solution of
different (NLSE). This section will describe the short description about this method[26,27]. In Eq.
(6), balancing P3 (§) with P”(¥) yield N = 1. The solution is expressed in the following structure:

P =go+ g1m($), )

That (&) satisfies the following equation:

w'(§) = i+ Br(§)? + m(§)*, (10)

Inserting Eq. (9) together with Eq. (10) into Eq. (6), we get a system of algebraic equations. Solving
these equations together yields the following:

eql = bg3 —2Lg, =0,
eq2 = 3bg?g, =0,
—3bg¢ LB o* S w (12)
eq3——2< > +7—7—§+5 g1 =0,
eq4 = go(bgé + 0>+ S —w) = 0.

Solving the resulting system, we get
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2L o’+S—w

go=0, 9= 3 =1
“o 3 2L _0'2+S—w
gO_ ) gl_ bv - I .

By using Egs. (3),(9), (10), and (12), solutions of Eq. (6) is obtained,

CaseL: If 8> 0,and x =0, afterward:
2L
G=t g (J=FG B) sechyy (JE),
0103, 2,0) = ijzb; (JFGB) sechyy (VB §) x ell-raroraymsaacternraess)

Py = f (g B) eschyg (VB E),
quz(x’ y,2, t) = i\/% (\/fg_ﬁ) CSChfg(\/Ff) % ei(—le—lczy—ng—(rzt+aW(t)+wt+¢9)’

0%+S-w
L

Where f = le + Bzy + B3Z - Vt, B =

Casell: If B < 0, and k = 0, afterward:

Ps = \/ —f9 B secrs(V=5¢),

2L e 2 .
G2 0oy, =+ [0 TTg B secry (= E) x ef{Cmasay-me-attaw(ovats),

Pia= \/—fg B escrg (V=B ),

2L e ,
qua(x,y,2,t) = £ - /—fg,gCSCfg( [~ f) x el(-K1x-Kzy—K3z=0 t+oW(O)+wL+6)

02+S-w

Where { = le + Bzy + B3Z - Vt, ﬁ = L

2
Caselll: If f<0, and k = ﬁT, afterward:

+ ;ZL ’—ﬂ -
=+ > 7 tanhfg< - f),
2L _B _B i(— - —-K3z—0“t+0 w
qus(x’y,z’ t) =+ p > tanhfg< 5 E) X el( K1X—K2Y—K3 2t+oW (D) + t+9),

191

(12)

(13)

(14)

(15)

(16)

A7)
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2L |-pB ')
+ _
Ae=t /7 / 2 C“hfg< ITf)
’ZL /—ﬁ B o, o
quﬁ(x,y,z, )=+ - |7 COthfg< 5 f) x el( K1X—KpY—K3Z—02t+oW (t)+wt+ )’

Py =t \/% ( E (tanhys (V=28 ¢) £ Fg sechyy (V=25 f))>,

q1,(x,y,2,t) = i\/% (E (tanhq,(—2B &) +/fg sechsy (/2B f)))

X e i(—K1x—Kpy—K32—02t+aW () +wt+8)
)

Rhy=t E E(cothfg (V=26¢) £ /Fg eschyy (V=28 f))>'

2L

Qis(x,y,2,t) = % > E (cothfg(,/—Z,B &)+ \/Ecschfg(,/—Z,B E)))

X e i(—K1x—Kpy—K3z—02t+aW () +wt+8)
)

N 2L |-p —B B
ry=t (7| 5 tanhw( & f) +cothyg (|5 9)
’ZL - - —
CI1,9(x' Y,Z, t) = i F —8‘8 (tanhfg ( _8‘8 f) + COthpq ( BB f)))

X e i(—K1x—Kpy—K32—02t+aW () +wt+8)
)

0%+S-w
L

Where é = Bix + B,y + Byz—Vt, B =

2
CaseIV:If > 0,and k = ﬁT, afterward:

}ZL B B
+
Phip=1= ?\[;tanfg (\[;f),
q110(,y,2,t) = %\/étanfg <E5> x el(-rx—Kzy—K3z=0Zt+oW (D) +wt+0)
2L (B B
+ _
Py =% ?\/;C()tfg (\/;f);
q111(x,y,2,t) = & ZBTL\/éCOtfy <E€> * ei(_le_sz_ng_ozt+JW(t)+wt+9),

(18)

(19)

(20)

(21)

(22)

(23)
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Pl1, = \/% <\/§ (tanfg 268+ \/_gsecfg (‘/_f))>

2L
q112(x,¥,2,t) = i\/; <\E (tanfg(\/ﬁf) t \/Esecfg(\/ﬁf))>

X e i(—K1x—Kpy—K3Z—02t+aW () +wt+8)
)

Plis = +\/¥ (\/7 (COtfg(\/—f) +C5Cfg(\/—f))>
2L |B
Tis(xy,2,0) = & ﬁ ( ﬁ (cotyg (V2B &) +escyy (ﬁs)))

X e i(—K1x—Kpy—K3z—02t+aW () +wt+8)
)

P, =+ 2;( jé<mnfg ( jg? e>+cotfg ( ﬁe)))
(( B e j@)))

X e i(—K1x—Kpy—K3z—02t+aW () +wt+8)
)

024S-w
L

Where & = Byx+ B,y + Bsz—Vt, B =

4. Hamiltonian and Jacobian of the system

Critical points Let, P = U then [28,29]

(w—02-15) b
Py
L +L

U =

Critical point U = 0 then

(w—0?-15) b
P p4-pi=o,
L +L

(w—0*-5) b _,

(w—0?-15) N (w—02-15)

=P=0 P?= =
b - b

Hence we get three critical points

*.0) = o), ( waﬂoﬂ wasw

193

(24)

(25)

(26)

@7)

(28)

(29)
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Hamiltonian
v b _, (w-0d*-9) ,
_v_b Ww=—o9 =2 30
H(P,U) 2 4LP + 2L P o
Let, F (P,U) = U then
— g2 _
G(P,U) = _up +é p3, (31)
L L
Jacobian:
oF oF
] = op au
G G
AT (32
0 1 o2
J=D(P,U)=‘_(w_—‘£2‘5)+i_bp2 0 |=(w L S)+%P2'
Now
0 52
](0,0):‘_((0—02—5) 0 =(wi—5), (33)
L
And
PR 0 1 —o2—
](i (CL)OZ')—.S')’()): 2(w—0%-Y9) 0 —Z(w LG 5) (34)
L

5. Analyzing bifurcation

V.if D(P,U) < 0, then (P, U) is a saddle point;
VL if D(P,U) > 0, then (P, U) is a center point;
VIL. if D(P,U) = 0, then (P, U) is a cuspidal point.

Here are possible outcomes resulting from varying the parameters involved.
—g2—
Casel:(wi—s)<0and %<O

By choosing a parameter regime as B; =0.9,B, =0.8,B3 =0.7,a; = 0.8,a, = 0.75,a3 =
09,a, =0.75,a5 = 1,a4 =19,k;, = 0.9, kK, =0.67,k3=0.7, w=09,0 =0 and b=
0.6, we find three equilibrium point (0.0), (1.639118157,0), and (—1.639118157,0) as shown in
Fig .1la .Obviously ,(0.0) is a saddle point ,whereas (1.639118157,0), and (—1.639118157,0)
are center points.

—o2—
case2: W7D < oand 2> 0
By selecting a parameter regime as B; =0.9,B, =0.8,B; =0.7,a; = 0.8,a, = 0.75,a3 =
0.9,a, =0.75,a5 = 1,34 =19,x, = 0.9, x, =0.67, k3=0.7, ®=09,0=0 and b=
—0.6,we find that the only real point is (0.0)(saddle point) as presented in Fig.1b.
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g2
Case 3: w>0and §<O

By selecting a parameter regime as B; =0.9,B, =0.8,B; =0.7,a; = 0.8,a, =0.75,a; =
0.9,a, =0.75,a5 = 1,34 =19,x; =09, x, =0.67, xk3=0.7, w=-2,0=0 and b=
0.6,we find that the only real point is (0.0)(center point) as presented in Fig.1c.

(w—02-5)

Case4: > 0 and Zb >0

By selecting a parameter regime as B; =0.9,B, =0.8,B; =0.7,a; = 0.8,a, =0.75,a; =
0.9,a, =0.75,a5s = 1,a4 = 1.9,x; = 0.9, x, =0.67, k3 =0.7, ®w =—-2,0=0 and b = —-0.6,
we find three equilibrium point (0.0), (1.465136512,0), and (—1.465136512,0) as shown in Fig
.1a .Obviously ,(0.0) is a saddle point ,whereas (1.465136512,0), and (—1.465136512,0) are
center points.

(c) (d)

(w-02-5)

Figure 1. phase portraits of the planar system(20) when a .

<0and%<0,b

(a)—o‘Z—S)

o2
>Oand—b<0,d (w=d?=5) S)>0 and2>0.
L L L L
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6. Chaotic behaviors

In this subsection, by considering a perturbed term in the resulting planar system, the existence of
chaotic behaviors investigated by analyzing some two-dimension al phase portraits.to start,
consider the following planar system
dpP
# =U(1),
‘ (35)

du(t) (w—JZ—S)P bP3 Acos(B
praaie I (t)+Z (t) + Acos(Bt),

Invoving the perturbed term A cos (Bt) , where A and B signify the amplitude and frequency of
the system, respectively .In Fig.2, two dimensional phase portraits of the wang equation(35),B; =
09,B, =0.8,B; =0.7,a;, = 0.8,a, = 0.75,a; = 0.9,a, = 0.75,a5 = 1,a4 = 1.9,k; = 0.9,
kK, =0.67, k3=0.7, w=09,0=0,b=0.6and A = 0.5when(a)B = 0; (b)B = 0.175.

1 0 1

(a) (b)
Figure 2. two - dimensional phase portraits of the wang equation(28),B, = 0.9,B, = 0.8,B; = 0.7,a, = 0.8 ,a, =
0.75,a; =09, a, =0.75,as = 1,a, =19, k¥, =09, k, =0.67, k3 =07, w=09 ,6 =0, b=06andA =
0.5 when(a)B = 0; (b)B = 0.175.

7. Sensitivity Analysis

In this subsection, the sensitivity analysis of the planar system (27) is accomplished using the
Runge -Kutta method. To this end, the following planar system

dP(t)
—==U@),

de ) (36)
dU(t)__(w—a —S)P 9P3t

= PO+ PO,

Is solved by the Runge _Kutta method for B, =0.9,B, =0.8,B3 =0.7,a;, =08 ,a, =
0.75,a3 = 09,a, = 0.75,a5s = 1,a, = 1.9,k = 0.9, kK, = 0.67,k3 = 0.7

,w=20.9, 0 =0, and,b = 0.6 when the initial conditions are(a) P(0) = 0.1 and U(0) = 0 ; (b)
P(0) = 0.1and U(0) = 0 .1; (c) P(0) = 0.2 and U(0) = 0.
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PU

1
2 —_— ] S— N - — ~ ~ - —
0 5 0 15 2 2 N B 40 &5 50 0 5 10 15 2 25 0 B N0 445 0
t '

(© (d)
Figure 3. Sensitive analysis of the wang Eg. (36) forB; = 0.9,B, = 0.8,B; = 0.7,a; = 0.8,a, = 0.75,a3 = 0.9,
a, =0.75a;=1 ,a4 =19, =09, k, =0.67,k3 = 0.7, = 0.9,0 = 0,and, b = 0.6 when the initial conditions
are (a) P(0) =0.1and U(0) = 0; (¢) P(0) = 0.1 and U(0) = 0.1 ; (d) P(0) = 0.2 and U(0) = 0.

Figure 3 shows the results given by such an effective scheme. looking at the figures, it is clear that
small changes in the initial conditions do not affect the stability of the solution very much.

8. Soliton solutions

— g2 —
@zt =S, b (37)

P =
L L

From (37), we establish a planar system as:

(dP@

& U, -
du§) (w=-0%-5) b
i @ I P($) +ZP3(6),
The system (38) is a Hamiltonian system with the following Hamiltonian function:
U (w=-0?-Y9) b 3
HP,U) = —+————P*@) =7 P*@) =h 39)
where h is Hamiltonian. Thus, we have
Uz (w—0?-5) b
7—]’1_TP2+EP41
(40)
B (w—02-25) b
= U = i\/Z_jh—TPZ +EP4,
Now,
dap _ar
(w—0%2-25) b
A (IRCEL D P
dP
=>f = V2 (€ +&).
Jh _MPZ +£p4
2L 4L

Let h =0, then, Eqg. (1) has the bright soliton solution as the follows [25]:
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2(w—0%2-25) —-w+0%2+S
G115(x,y,2,t) = + — sech — I (Byx + B,y + Byz—Vt+§&,) (41)

X ei(—K1x—sz—K32—02t+aW(t)+mt+9)
With constraints
(—w+0a2+S)L >0, “2)
(w—0%2-5)b>0, @3

L = ale + azBZZ + a3B§ + 2(143132 - 2(153133 - 2(163233,

S = a;k? + ayk3 + azk3 + 2a4k, K, — 2ask K3 — 206Ky K3.

() (©) (d)
Figure 4. Bright soliton for B, = 0.9,B, = 0.8,B; = 0.7,a;, = 0.8,a, = 0.75,a3 = 0.9,a, = 0.75,a5; = 1,a, =
19,k, =09, K, =0.67,k3=07, w=09,0=1¢& =0,0=09,W=0,andy =z=0whenab =0.6;cb =
1.2;dt=0,b=0.6,andt =0,b = 1.2

Leth = % , then, Eq.. (1) has the dark soliton solution as the follows [25]:

( t) =+ W=0"=9) | [©Z=9 (Byx + Byy + Baz -Vt + &)
xX,Y,Z, =T an X Z —
q1,16(X,y b oL 1 2Y 3 0 (44)

x gi(-K1x=K2y=K32=02t+oW () +wt+6) )
(w—02=5)L>0, (45)
(w—0*=S)b>0, (46)
L =a,B? + a,B? + a;B% + 2a,B,B, — 2asB,B; — 2a¢B,Bs,

S = a;k? + ayK3 + azx2 + 2a,K.k, — 25K K3 — 2agK,Ks.
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Dol ota ol oteta bs

(a) (©) (d)

Figure 5. dark soliton forB; = 0.9,B, = 0.85,B; = 0.7,a; = 1.4,a, = 0.8,a; =09,a, =0.8,a5 =1 ,a4 =
1.6,k, =09 , kK, =07, k3=06, w=2,0=1¢& =0, 0=09,W=0,andy=z=0 whenab = 0.6,c
b=12dt=0,b=06andt=0,b=12.

To show the effect of the Kerr nonlinearity on the wave characteristics of bright and dark soliton ,
we first plot the bright soliton in Fig.4 for B, = 09,B, =0.8,B; =0.7, a; =08 , a, =
0.75, a3=09, a,=0.75,a5=1, ag=19, ¥, =09, x, =0.67,x3=0.7, w =
09,0=1,W=0,¢ =0,andy=2z=0, 6 =0.9,when (a) b = 0.6; (c) b = 1.2. From these
figures, it can be concluded that the width and height of the bright soliton decrease by increasing
the coefficient of the Kerr nonlinearity .Additionally we depict the dark soliton in Fig.5 for as
B, =0.9,B,=0.85B;=0.7 a; =14,a,=0.8,a;,=09,a, =08 ,as =1,a, = 1.6,

kK1 =09, k, =0.7,x3=06,w=2,0=1W=0,80=0,andy=z=0,0 = 0.9when(a) b =
0.6 ,(c) b = 1.2;, It is observed that by increasing the value of the b, height of the dark soliton
decrease ,whereas its width increases.

9. Conclusions

The application of SSM to the extended (3+1)-dimensional stochastic nonlinear Schrodinger
equation in terms of multiplicative noise has provided valuable knowledge into the dynamics of
complex nonlinear equations and derived a range of exact solutions, including soliton-like,
periodic, bright, dark, and singular solutions. We uncovered critical transition points where the
system's behavior changes significantly, the bifurcation analysis is conducted which highlighted
the complex nature of nonlinear dynamics. The addition of external periodic function enhanced
the study of chaotic behaviors and reveal areas of instability that show the unpredictable nature of
such systems. Sensitivity analysis further focused how small changes in system parameters could
yield to dramatic changes in the dynamics, offering insights into the robustness and
responsiveness of the approach. The stability of equilibrium points was analyzed by linearizing the
system which allow us to find the nature of these points and their influence on long-term behavior.
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