
 

 

Computational Sciences and Engineering 4(2) (2024) 319-330 
 

  

 

 

Computational Sciences and Engineering 

University of Guilan journal homepage: https://cse.guilan.ac.ir/ 
   

 

Analysis of a 𝑴[𝑿]/𝑮/𝟏 queueing system with an unreliable server and delaying 

vacations using maximum entropy 

Moein Mohsenzadeha,⁎, Mahdi Doustparastb, Abdolrahim Badamchizadehc, Mohammad Jelodari 

Mamaghanid 

a Ph.D. student of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran 
b Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran 
c
 Department of Statistics, Allameh Tabataba’i University, Tehran, Iran 

d
 Department of Mathematics, Allameh Tabataba'i University, Tehran, Iran 

 

A R T I C L E   I N F O  A B S T R A C T 

Article history: 

Received 2 April 2025 

Received in revised form 12 August 2025 
Accepted 13 August 2025 

Available online 19 November 2025 

 

 This paper deals with a single unreliable server and with delaying 

vacations which has Poisson arrivals and general distribution for the 

service times. The server can be activated at arrival epochs or 

deactivated at service completion epochs. The maximum entropy 

principle is increasingly relevant to queueing systems. The principle of 

maximum entropy (PME) presents an impartial framework as a 

promising method to examine complex queuing processes. We use 

maximum entropy principle to derive the approximate formulas for the 

steady-state probability distributions of the queue length. The 

maximum entropy approach is then used to give a comparative perusal 

between the system’s exact and estimated waiting times. We 

demonstrate that the maximum entropy approach is efficient enough 

for practical purpose and is a feasible method for approximating the 

solution of complex queueing systems. 
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1. Introduction 

Queuing theory is one of the branches of stochastic processes, which is of interest to many 

researchers of statistics and other sciences, both in terms of application and theory; By using it, the 

systems that provide service to customers are studied.  Among the uses of queuing models are 

telephone conversations, digital communication, computer networks, inventory control, 

production line flow, and transportation systems.  One of the important goals of these models is 

optimal service to customers.  Optimization (reducing the length of the queue and reducing the 

waiting time) performed using appropriate cost functions and metrics such as the expected number 
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of customers in the system, the expected waiting time of customers in the system, the expected 

period of employment (or the period of unemployment) servers and etc is done. Previous studies, 

such as [6], analyzed the 𝑀[𝑋]/𝐺/1 queueing system with a reliable server and delaying vacations, 

while [7] examined unreliable servers with retrial and multiphase optional services. Nithya and 

Haridass [1] , [2] explored cost optimization and maximum entropy analysis for bulk queueing 

systems with vacations and breakdowns. Unlike these works, this paper uniquely combines the 

analysis of an unreliable server with delaying vacations in an 𝑀[𝑋]/𝐺/1 queueing system, using 

the maximum entropy principle to derive approximate steady-state probability distributions. Our 

contribution lies in: (1) extending the maximum entropy approach to handle the combined effects 

of server breakdowns and delaying vacations, (2) providing a comparative analysis of exact and 

approximate waiting times across multiple distribution scenarios (e.g., Erlang, hyperexponential, 

deterministic), and (3) demonstrating the robustness of the maximum entropy method for practical 

queueing system analysis, particularly in industrial applications such as computer networks and 

production lines. 

Maximum entropy is used to reduce uncertainty of knowledge.  After several stages of information 

gathering, we will arrive at a unique set of possibilities, and at the end, uncertainty will disappear 

completely. This principle is used to use all available information and avoid using any additional 

information. Therefore, the use of any distribution other than the maximum entropy requires the 

use of additional information that is not available. [1] considered a variant timer policy for the 

𝑀𝑋/𝐺/1 queueing system with an unreliable server and delaying vacations. [2] presented a study 

of unreliable server retrial bulk queue with multiphase optional service is analyzed by 

incorporating the features of balking, Bernoulli vacation and Bernoulli feedback. they perform a 

comparative study of the exact waiting time obtained by the supplementary variable technique and 

the approximate waiting time derived by using maximum entropy principle by taking the 

numerical illustration. To verify the outcomes of the model, numerical illustrations and senstivity 

analysis have been accomplished. [3] conducted a stochastic modelling and the maximum entropy 

analysis of the 𝑀𝑋/𝐺/1 queuing system with vacation interruption, balking and startup. In the 

assessment of a bulk waiting framework with malfunction, regulated arrival, and numerous 

vacations, further [4] looked at optimisation of costs and the highest level of entropy analysis. [5] 

have looked into maximum entropy findings and optimization results for 𝑀𝑋/𝐺/1 reiterate G-

queue with delayed repair. Moreover, [6] used particle swarm optimization technique to obtain the 

optimal costs of a reiterate G-queueing framework with working malfunction and working leisure 

including batch arrival. [7] The aspects of general service bulk arrival retrial G-queue including 

working vacation, state-dependent arrival, priority users, and working breakdown are all explored 

in this article. Initially, they have estimated performance metrics including orbit size and long-run 

probabilities in this research work. The maximum entropy approach is then used to give a 

comparative perusal between the system’s exact and estimated waiting times. [8] the N policy 

M/G/1 queueing system with a removable server was analyzed by using the maximum entropy 

method. they used maximum entropy principle to derive the approximate formulas for the steady-

state probability distributions of the queue length. The maximum entropy approach is then used to 

give a comparative perusal between the system’s exact and estimated waiting times. they 

demonstrate that the maximum entropy approach is efficient enough for practical purpose and is a 

feasible method for approximating the solution of complex queueing systems. Apart from that a 

bi-objective optimization model is developed to diminish both consumers waiting times and 

estimated costs simultaneously.  In this research, we want to study the 𝑀[𝑋]/𝐺/1 queuing system 
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an unreliable server and delaying vacations. For this purpose, first introduce the system, then 

introduce the symbols and probabilities used during the research. Next, we obtain the maximum 

entropy solutions for the analysis of the 𝑀[𝑋]/𝐺/1 queueing system with an unreliable server and 

delaying vacations; And finally, we obtain the expected waiting time in the queue using the 

classical method and the maximum entropy method and perform a comparative analysis between 

the approximate results and the exact results for the distribution of different vacations, service 

time and repair time. 

2. 𝑴[𝑿]/𝑮/𝟏 queueing system with an unreliable server and delaying vacations 

A server with delaying vacations waits for a random time (T) upon returning to an empty system. 

If no customers arrive during (T), the server shuts down; otherwise, it resumes service.  

In this system customers arrive in batches to occur according to a compound Poisson with rate λ. 

𝑋𝑘 Indicates the number of customers belonging to the kth arrival batch, where 𝑋𝑘 , (𝑘 = 1,2, … ) 

Are with a common distribution. 

𝑃(𝑋𝑘 = 𝑛) = 𝑋𝑛                        ,                        𝑛 = 1,2, … 

Arriving customers within batches to the server form a single waiting line and are served in the 

order of their arrivals (First-Come, First-Served, FCFS discipline). The server can serve only one 

customer at a time. The service time provided by a single server is an independent and identically 

distributed (iid) random variable (S) with a general distribution function S(t). Unreliable server 

means a server that breaks down unpredictably. The server is subject to breakdowns at any time 

with a Poisson breakdown rate α when he is working (The distribution of the time between two 

breakdowns is Poisson). Whenever the server fails, he is immediately repaired at a repair facility, 

where the repair time is an (iid) random variable (R) with a general distribution function R(t). If 

the server breaks down while serving customers, he is sent for repair and the customer who has 

just being served should wait for the server back to complete his remaining service. Immediately 

after the server is fixed, he starts to serve customers until the system is empty, and the service time 

is cumulative. delaying vacations server means that if the server returns after a random period of 

time, and finds the system is empty, the server considers a random time T and waits dormant in 

the system, and if no group enters the system during this period. The server goes to shut down, but 

if during the idle period T, at least one customer arrives, the server starts serving and continues to 

provide the service until the system is empty again. A customer who arrives and finds the server 

busy or broken down must wait in the queue until a server is available. Although no service occurs 

during the repair period of a broken server, customers continue to arrive according to a Poisson 

process. It is assumed that the time between two arrivals, group sizes, service times, failure times, 

repair times, shutdown times, and dormant period in the system are independent of each other. 

3. Notations and probabilities 

In order to be familiar with the symbols and possibilities of this system in this research, we 

introduce them in this section. 

λ: arrival rate (parameter units: customers per second). 

μ: mean service time (parameter units: services per second). 

α: server breakdown rate (parameter units: breakdowns per second). 
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β: repair time rate (parameter units: repairs per second). 

γ: vacation time rate (parameter units: shutdowns per second). 

∅: timer duration rate (parameter units: per second). 

𝑋𝑘: the number of customers belonging to the kth arrival batch 

T: a random variable, which indicates the time when the server is idle in the system. 

V: a random variable, which indicates the time when the server is in shutdown. 

S(t): general distribution of service time. 

R(t): general distribution of repair time. 

𝜌𝐹: traffic intensity, where 𝜌𝐹 = 𝜆𝐸[𝑋]𝐸[𝑆](1 + 𝛼𝐸[𝑅]).  In the steady state 𝜌 < 1. 

F: A random variable that indicates the time to complete the service to the customer, which 

includes the time to serve the customer and the time to repair the server. 

E[F]: first moment of the service completion time, which is obtained as follows: 

𝐸[𝐹] = 𝐸[𝑆](1 + 𝛼𝐸[𝑅]) (1) 

 

E(𝐹2): second moment of the service completion time 

𝐸[𝐹2] = (1 + 𝛼𝐸[𝑅])2𝐸[𝑆2] + 𝛼𝐸[𝑆]𝐸[𝑅2] (2) 

 

Probability that no arrivals in T: 

𝑇̅(𝜆) = ∫ 𝑒−𝜆𝑡𝑑 𝑃𝑟[𝑇 ≤ 𝑡]
∞

0

 (3) 

 

Probability that no arrivals in V: 

𝑉̅(𝜆) = ∫ 𝑒−𝜆𝑣𝑑 𝑃𝑟[𝑉 ≤ 𝑣]
∞

0

 (4) 

 

∏0(𝑛) ≡ probability that there are n customers in the system when the server is dormant idleness 

in the system (𝑛 = 0,1,2, … ). 

∏1(𝑛) ≡ probability that there are n customers in the system when the server is on vacation 

(𝑛 = 0,1,2, … ). 

∏2(𝑛) ≡ probability that there are n customers in the system when the server is in operation 

(𝑛 = 1,2, … ). 

∏3(𝑛) ≡ probability that there are n customers in the system when the server is operational but 

breaks down (𝑛 = 1,2, … ). 

For the 𝑀[𝑋]/𝐺/1 queueing system with an unreliable server and delaying vacations, we have the 

following five results [9] and [10]: 

probability that the server is dormant in the system: 
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∑ ∏0(𝑛)  =
𝑉̅(𝜆)[1 − 𝑇̅(𝜆)](1 − 𝜌𝐹)

𝜆𝐸[𝑉] + 𝑉̅(𝜆)[1 − 𝑇̅(𝜆)]
= 𝜂0

∞

𝑛=0

 (5) 

 

probability that the server is on vacation 

∑ ∏1(𝑛)  =
𝜆𝐸[𝑉](1 − 𝜌𝐹)

𝜆𝐸[𝑉] + 𝑉̅(𝜆)[1 − 𝑇̅(𝜆)]
= 𝜂1

∞

𝑛=0

 (6) 

 

probability that the server is busy 

∑ ∏2(𝑛)

∞

𝑛=1

= 𝜆𝐸[𝑋]𝐸[𝑆] = 𝜌 (7) 

 

probability that the server is broken down 

∑ ∏3(𝑛)

∞

𝑛=1

= 𝜆𝐸[𝑋]𝐸[𝑆]𝛼𝐸[𝑅] = 𝜌𝛼𝐸[𝑅] (8) 

 

exact expected number of customers in the system 

𝐿𝑠 =
(𝜆𝐸[𝑋])2𝐸[𝐹2]

2(1 − 𝜆𝐸[𝑋]𝐸[𝐹])
+

𝜆𝐸[𝐹]𝐸[𝑋(𝑋 − 1)]

2(1 − 𝜆𝐸[𝑋]𝐸[𝐹])
+ λ𝐸[𝑋]𝐸[𝐹] +

𝜆2𝐸[𝑋]𝐸[𝑉2]

2{𝜆𝐸[𝑉] + 𝑉̅(𝜆)[1 − 𝑇̅(𝜆)]}
 (9) 

 

4. maximum entropy 

Exact probability distributions of the𝑀[𝑋]/𝐺/1 queueing system with an unreliable server and 

delaying vacations have not been found. Therefore, the main reason why we use the maximum 

entropy principle for a complex queueing system is to estimate probability distributions given 

several known results is necessary. 

Following [11], the entropy function Y of the 𝑀[𝑋]/𝐺/1 queueing system with an unreliable 

server and delaying vacations is formed as: 

Y = − ∑ ∏0(𝑛)

∞

n=0

ln ∏0(𝑛) − ∑ ∏1

∞

n=0

(n) ln ∏1 (n) − ∑ ∏2

∞

n=1

(n) ln ∏2 (n) − ∑ ∏3

∞

n=1

(n) ln ∏3 (n)    (10) 

 

To obtain the maximum entropy solutions in this system, we must maximize the above function to 

the following constraints. 

(1) normalizing condition: 

∑ ∏0

∞

n=0

(n) + ∑ ∏1

∞

n=0

(n) + ∑ ∏2

∞

n=1

(n) + ∑ ∏3

∞

n=0

(n) = 1 (11) 

 

(2) the probability that the server is on vacations 
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∑ ∏1

∞

n=0

(n) = 𝜂1 (12) 

 

(3) the probability that the server is busy 

∑ ∏2

∞

n=1

(n) = 𝜌 (13) 

 

(4) the probability that the server is broken down 

∑ ∏3

∞

n=1

(n) = 𝜌𝛼𝐸[𝑅] (14) 

 

(5) the expected number of customers in the system 

∑ 𝑛∏0

∞

n=0

(n) + ∑ 𝑛∏1

∞

n=0

(n) + ∑ 𝑛∏2

∞

n=1

(n) + ∑ 𝑛∏3

∞

n=0

(n) = 𝐿𝑠 (15) 

 

where 𝐿𝑠 is given by (9). 

(11) is multiplied by 𝜔1, (12) is multiplied by 𝜔2, (13) is multiplied by 𝜔3, (14) is multiplied by 

𝜔4, and (15) is multiplied by 𝜔5. Thus the Lagrangian function y is given by: 

y = − ∑ ∏0

∞

n=0

(n) ln ∏0 (n) − ∑ ∏1

∞

n=0

(n) ln ∏1 (n)  − ∑ ∏2

∞

n=1

(n) ln ∏2 (n) − ∑ ∏3

∞

n=1

(n) ln ∏3 (n)

− 𝜔1 [∑ ∏0

∞

𝑛=0

(𝑛) + ∑ ∏1

∞

n=0

(n) + ∑ ∏2

∞

n=1

(n) + ∑ ∏3

∞

n=1

(n) − 1] −𝜔2 [∑ ∏1

∞

𝑛=0

(𝑛)

− 𝜂1] − 𝜔3 [∑ ∏2

∞

n=1

(n) − ρ] − 𝜔4 [∑ ∏3

∞

n=1

(n) − ρα𝐸[𝑅]]

− 𝜔5 [∑ n∏0(n) + ∑ 𝑛∏1

∞

n=0

(n) + ∑ 𝑛∏2

∞

n=1

(n) + ∑ 𝑛∏3

∞

n=1

(n) − 𝐿𝑠

∞

𝑛=0

] 

(16) 

 

Refer to Joe and Chen (2008) for details on how the proof is established 

∏0(𝑛) = (
1 − 𝜂1 − 𝜌𝐹

1 − 𝜌𝐹 + 𝐿𝑆

) (
𝐿𝑆 − 𝜌𝐹

1 − 𝜌𝐹 + 𝐿𝑆

)
𝑛

               ,                     𝑛 = 0,1, … (17) 

 

∏1(𝑛) = (
𝜂1

1 − 𝜌𝐹 + 𝐿𝑆

) (
𝐿𝑆 − 𝜌𝐹

1 − 𝜌𝐹 + 𝐿𝑆

)
𝑛

               ,                     𝑛 = 0,1, … (18) 

 

∏2(𝑛) = (
𝜌

𝐿𝑆 − 𝜌𝐹

) (
𝐿𝑆 − 𝜌𝐹

1 − 𝜌𝐹 + 𝐿𝑆

)
𝑛

                   ,                     𝑛 = 1,2, … (19) 

 

∏3(𝑛) = (
𝜌𝛼𝐸(𝑅)

𝐿𝑆 − 𝜌𝐹

) (
𝐿𝑆 − 𝜌𝐹

1 − 𝜌𝐹 + 𝐿𝑆

)
𝑛

                  ,                     𝑛 = 1,2, … (20) 
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5. Expected waiting time  

In this section, we obtain approximate and exact formulas for the expected waiting time in  this 

queuing system. 

The exact expected waiting time in the queue 

Let E(W) denote the exact expected waiting time in the queue. Using (9) and Little's formula, we 

have: 

𝐸(𝑊) =
𝐿𝑠

𝜆𝐸[𝑋]
− 𝐸(𝐹)

=
𝜆𝐸[𝑋]𝐸(𝐹2)

2(1 − 𝜆𝐸[𝑋]𝐸(𝐹))
+

𝐸(𝐹)𝐸[𝑋(𝑋 − 1)]

2𝐸[𝑋](1 − 𝜆𝐸[𝑋]𝐸(𝐹))
+

𝜆𝐸(𝑉2)

2{𝜆𝐸(𝑉) + 𝑉̅(𝜆)[1 − 𝑇̅(𝜆)]}
 

(21) 

The approximate expected waiting time in the system 

Using the [1] results, the approximate expected waiting time in the queue is as follows: 

𝐸(𝑊̃) = ∑ {
𝐸[𝑆]

2
.
𝐸[𝑋(𝑋 − 1)]

𝐸[𝑋]
} Π0(𝑛)

∞

𝑛=0

+ ∑ {
𝐸[𝑉2]

2𝐸[𝑉]
+ 𝑛𝐸[𝑆] +

𝐸[𝑆]

2
(

𝐸[𝑋(𝑋 − 1)]

𝐸[𝑋]
)} Π1(𝑛)

∞

𝑛=0

+ ∑ {𝑛𝐸[𝑆] +
𝐸[𝑆]

2
.
𝐸[𝑋(𝑋 − 1)]

𝐸[𝑋]
} Π2(𝑛)

∞

𝑛=0

+ ∑ {
𝐸[𝑅2]

2𝐸[𝑅]
+ 𝑛𝐸[𝑆] +

𝐸[𝑆]

2
(

𝐸[𝑋(𝑋 − 1)]

𝐸[𝑋]
)} Π3(𝑛)

∞

𝑛=1

 

(22) 

or equivalently equal to: 

𝐸(𝑊̃) =
𝐸[𝑆]

2
.
𝐸[𝑋(𝑋 − 1)]

𝐸[𝑋]
+

1

2
∑ (

𝐸[𝑉2]

𝐸[𝑉]
Π1(𝑛) +

𝐸[𝑅2]

2𝐸[𝑅]
Π3(𝑛))

∞

𝑛=0

+ 𝐸[𝑆] ∑ ∑ 𝑛Π𝑖(𝑛)

∞

𝑛=1

3

𝑖=1

 (23) 

6. Comparative Analysis of Queueing Systems 

This section evaluates the accuracy of the maximum entropy method by comparing exact and 

approximate expected waiting times E(W) for the 𝑀[𝑋]/𝐺/1 queueing system with an unreliable 

server and delaying vacations. The analysis considers six cases with varying distributions (Erlang, 

hyperexponential, deterministic, exponential) for service time, repair time, vacation time, and 

timer duration. The relative error is calculated using MATLAB as: 

Dev =
|exact value −   approximate  value|

exact value
× 100 

Tables 1–3 summarize the results for the following systems: 

(1) Comparative analysis for M [X]/𝐸4 (𝐻2, 𝐸2, 𝐷)/1  and M [X]/𝐻2 (𝐸4, 𝐸2, 𝐷)/1 queueing 

systems with an unreliable server and delaying vacations. 

(2) Comparative analysis for M [X]/D (𝐸4, 𝐻2, 𝑀)/1 and M [X]/D (𝐸4, 𝑀, 𝐻2)/1 queueing systems 

with an unreliable server and delaying vacations. 

(3) Comparative analysis for M [X]/𝐸4 (𝐻2, 𝑀, 𝑀)/1 and M [X]/𝐸4 (𝐻2, D, 𝐷)/ 1 queueing systems 

with an unreliable server and delaying vacations. 
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 Here, denote M by exponential, D by deterministic, 𝐸𝐾 by k-stage Erlang, and 𝐻𝐾 by k-stage 

hyperexponential. 

In all calculations, to obtain the first moment, the second moment and the moment generating 

function of the distributions, the following points should be taken into account: 

For X has an exponential distribution with parameter θ, then: 

𝐸(𝑋) =
1

𝜃
 

𝐸(𝑋2) =
2

𝜃2
 

𝐸(𝑒𝑡𝑋) =
𝜃

𝜃 − 𝑡
 

if X has a deterministic distribution with parameter θ, then: 

𝐸(𝑋) =
1

𝜃
 

𝐸(𝑋2) =
2

𝜃2
 

𝐸(𝑒𝑡𝑋) = 𝑒
𝑡

𝜃⁄  

if X has a k-stage hyperexponential distribution, then: 

𝐸(𝑋) = ∑
𝑝𝑖

𝜃𝑖

𝑘

𝑖=1

 

𝐸(𝑋2) = ∑
2

𝜃𝑖
2 𝑝𝑖

𝑘

𝑖=1

 

𝐸(𝑒𝑡𝑋) = ∑
𝑝𝑖𝜃𝑖

(𝜃𝑖 − 𝑡)

𝑘

𝑖=1

 

that 𝑝𝑖 is the probability that X chooses the exponential distribution with parameter 𝜃𝑖. 

if X has a k-stage Erlang distribution with parameter θ, then: 

𝐸(𝑋) =
1

𝜃
 

𝐸(𝑋2) =
𝑘 + 1

𝑘𝜃2
 

𝐸(𝑒𝑡𝑋) = (
𝑘𝜃

𝑘𝜃 − 𝑡
)

𝑘

 

In all the numerical examples, for 𝐻2 distribution, we assume that 𝑞1 = 1
4⁄ , 𝑞2 = 3

4⁄ , as well as 

𝜃1 = 2𝑞1𝜃 and 𝜃2 = 2𝑞2𝜃. 



 M. Mohsenzadeh et al./ Computational Sciences and Engineering 4(2) (2024) 319-330  327 

 

Choosing two arrival batch sizes are distributed as uniform (U(1, 5)) and geometric (𝐺𝑒𝑜(1
3⁄ )), 

respectively. The values of different system parameters λ, α, β, γ and ∅ are considered in the 

following six cases: 

➢ μ = 5   , α = 0/05  , β = 10   , γ = 2/5   , ∅ = 5 and varying the values of   λ. 

➢ λ = 1/2   , α = 0/05   , β = 10   , γ = 2/5   , ∅ = 5 and varying the values of   μ. 

➢ λ = 1/2   , μ = 5   , β = 10   , γ = 2/5   , ∅ = 5 and varying the values of   α. 

➢ λ = 1/2   , μ = 5   , α = 0/05   , γ = 2/5   , ∅ = 5 and varying the values of   β. 

➢ λ = 1/2   , μ = 5   , α = 0/05   , β = 10   , ∅ = 5 and varying the values of   γ. 

➢ λ = 1/2   , μ = 5   , α = 0/05   , β = 10   , γ = 2/5 and varying the values of ∅. 

 

(1) Comparative analysis for M [X]/𝐸4 (𝐻2, 𝐸2, 𝐷)/1  and M [X]/𝐻2 (𝐸4, 𝐸2, 𝐷)/1 queueing 

systems with an unreliable server and delaying vacations. 

Table 1.  comparative analysis between E(W) and 𝐸(W̃) for M [X]/𝐸4 (𝐻2, 𝐸2, 𝐷)/1  and M [X]/𝐻2 (𝐸4, 𝐸2, 𝐷)/1 

queueing systems with an unreliable server and delaying vacations. 
 𝑀[𝑥]/𝐸4(𝐻2, 𝐸2, 𝐷)/1 𝑀[𝑥]/𝐻2(𝐸4, 𝐸2, 𝐷)/1 

 𝑈(1,5) 𝐺𝑒𝑜(
1

3
) 𝑈(1,5) 𝐺𝑒𝑜(

1

3
) 

 E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev 

λ 𝐶𝑎𝑠𝑒 1 ∶ 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 , ∅ = 4 

1 0.6813 0.6560 3.7001 0.9412 0.8944 4.9727 0.7966 0.8055 0.7322 1.0596 1.0438 1.4854 

1.1 0.7523 0.7211 4.1477 1.0412 0.9868 5.2183 0.8970 0.8830 1.5610 1.1859 1.1488 3.1310 

1.3 0.9534 0.9015 5.4452 1.3251 1.2472 5.8753 1.1735 1.1398 2.8717 1.5452 1.4656 5.1514 

1.5 1.3125 1.2353 5.8745 1.8337 1.7073 6.8919 1.6686 1.5999 4.1172 2.1897 2.0425 6.7223 

𝜇 𝐶𝑎𝑠𝑒 2 ∶ λ = 1.1  , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 , ∅ = 4 

5 1.1361 1.0902 4.0459 1.5953 1.5160 4.9722 1.4123 1.3378 5.2695 1.8715 1.7637 5.7589 

5.5 0.8991 0.8621 4.1076 1.2537 1.1893 5.1421 1.0929 1.0544 3.5300 1.4476 1.3815 4.5674 

6 0.7523 0.7211 4.1477 1.0412 0.9868 5.2183 0.8670 0.8830 1.5610 1.1859 1.1488 3.1310 

6.5 0.6529 0.6257 4.1729 0.8966 0.8497 5.2363 0.7656 0.7695 0.5044 1.0093 0.9935 1.5696 

𝛼 𝐶𝑎𝑠𝑒 3 ∶ λ = 1.1  , 𝜇 = 6 , 𝛽 = 8 , 𝛾 = 3 , ∅ = 4 

0.005 0.7513 0.7205 4.0931 1.0397 0.9861 5.1631 0.8958 0.8824 1.4958 1.1843 1.1479 3.0680 

0.01 0.7523 0.7211 4.1477 1.0412 0.9868 5.2183 0.8970 0.8830 1.5610 1.1859 1.1488 3.1310 

0.05 0.7605 0.7256 4.5829 1.0526 0.9930 5.6572 0.9070 0.8881 2.0796 1.1991 1.1555 3.6325 

0.1 0.7708 0.7314 5.1222 1.0670 1.0009 6.2007 0.9197 0.8947 2.7217 1.2159 1.1642 4.2529 

𝛽 𝐶𝑎𝑠𝑒 4 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛾 = 3 , ∅ = 4 

3 0.7568 0.7240 4.3415 1.0470 0.9904 5.4092 0.9017 0.8856 1.7839 1.1919 1.1520 3.3445 

5 0.7538 0.7220 4.2158 1.0431 0.9880 5.2860 0.8986 0.8839 1.6404 1.1880 1.1499 3.2074 

8 0.7523 0.7211 4.1477 1.0412 0.9868 5.2183 0.8970 0.8830 1.5610 1.1859 1.1488 3.1310 

10 0.7518 0.7208 4.1254 1.045 0.9865 5.1959 0.8965 0.8827 1.5347 1.1852 1.1484 3.1056 

𝛾 𝐶𝑎𝑠𝑒 5 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , ∅ = 4 

3 0.7523 0.7211 4.1477 1.0412 0.9978 4.1682 0.8970 0.8830 1.5610 1.1859 1.1688 1.4419 

5 0.6615 0.6333 4.2630 0.9504 09052 4.7558 0.8062 0.7803 3.2126 1.0951 1.0652 2.7304 

7 0.6283 0.5990 4.6633 0.9172 0.8669 5.4841 0.7730 0.7368 4.6830 1.0619 0.9998 5.9327 

9 0.6124 0.5812 5.0947 0.9012 0.8443 6.3138 0.7571 0.7168 5.3229 1.0121 0.9489 6.2444 

∅ 𝐶𝑎𝑠𝑒 6 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 

2 0.7191 0.6873 4.4221 1.0079 0.9436 6.3796 0.8638 0.8249 4.5033 1.1527 1.0812 6.2037 

4 0.7523 0.7211 4.1477 1.0412 0.9868 5.2183 0.8970 0.8830 1.5610 1.1859 1.1488 3.1310 

6 0.7705 0.7515 2.4626 1.0594 1.0225 3.4828 0.9153 0.9159 0.0652 1.2041 1.1868 1.4387 

8 0.7820 0.7710 1.4002 1.0709 1.0453 2.3903 0.9267 0.9368 1.0914 1.2156 1.2111 0.3729 
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(2) Comparative analysis for M [X]/D (𝐸4, 𝐻2, 𝑀)/1 and M [X]/D (𝐸4, 𝑀, 𝐻2)/1 queueing systems 

with an unreliable server and delaying vacations. 

 

 

Table 2.  comparative analysis between E(W) and 𝐸(W̃) for M [X]/D (𝐸4, 𝐻2, 𝑀)/1 and M [X]/

D (𝐸4, 𝑀, 𝐻2)/1 queueing systems with an unreliable server and delaying vacations. 

 

 (3) Comparative analysis for M [X]/𝐸4 (𝐻2, 𝑀, 𝑀)/1 and M [X]/𝐸4 (𝐻2, D, 𝐷)/ 1 queueing 

systems with an unreliable server and delaying vacations. 

 

 

 

 𝑀[𝑥]/𝐷(𝐸4, 𝐻2, 𝑀)/1 𝑀[𝑥]/𝐷(𝐸4, 𝑀, 𝐻2)/1 

 𝑈(1,5) 𝐺𝑒𝑜(
1

3
) 𝑈(1,5) 𝐺𝑒𝑜(

1

3
) 

 E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev 

λ 𝐶𝑎𝑠𝑒 1 ∶ 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 , ∅ = 4 

1 0.8179 0.7842 4.1215 1.0778 1.0234 5.0497 0.7210 0.7464 3.4041 0.9611 1.0063 4.4918 

1.1 0.8907 0.8514 4.4041 1.1795 1.1182 5.2035 0.7877 0.8185 3.7554 1.0555 1.1073 4.6793 

1.3 1.0950 1.0365 5.3392 1.4666 1.3834 5.6764 0.9714 1.0213 4.8914 1.3197 1.3930 5.2667 

1.5 1.4569 1.3545 7.0252 1.9780 1.8485 6.5494 1.2876 1.3819 6.8244 1.7832 1.9030 6.2958 

𝜇 𝐶𝑎𝑠𝑒 2 ∶ λ = 1.1  , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 , ∅ = 4 

5 1.2744 1.2223 4.0887 1.7226 1.6496 4.8487 1.1591 1.2022 3.5890 1.5879 1.6614 4.4272 

5.5 1.0374 0.9932 4.2650 1.3921 1.3214 5.0731 0.9297 0.9652 3.6776 1.2593 1.3199 4.5911 

6 0.8907 0.8514 4.4041 1.1795 1.1182 5.2035 0.7877 0.8185 3.7554 1.0555 1.1073 4.6793 

6.5 0.7913 0.7557 4.5083 1.0350 0.9805 5.2702 0.6917 0.7191 3.8195 0.9174 0.9628 4.7180 

𝛼 𝐶𝑎𝑠𝑒 3 ∶ λ = 1.1  , 𝜇 = 6 , 𝛽 = 8 , 𝛾 = 3 , ∅ = 4 

0.005 0.8897 0.8510 4.3546 1.1782 1.1175 5.1520 0.7872 0.8175 3.7033 1.0548 1.1060 4.6258 

0.01 0.8907 0.8514 4.4041 1.1795 1.1182 5.2035 0.7877 0.8185 3.7554 1.0555 1.1073 4.6793 

0.05 0.8983 0.8552 4.7995 1.1904 1.1236 5.6138 0.7917 0.8261 4.1702 1.0611 1.1182 5.1052 

0.1 0.9080 0.8599 5.2909 1.2042 1.1304 6.1231 0.7966 0.8358 4.6853 1.0682 1.1320 5.6332 

𝛽 𝐶𝑎𝑠𝑒 4 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛾 = 3 , ∅ = 4 

3 0.8944 0.8525 4.5735 1.1846 1.1209 5.3778 0.7898 0.8222 3.9335 1.0583 1.1124 4.8604 

5 0.8919 0.8521 4.4645 1.1813 1.1191 5.2659 0.7884 0.8197 3.8188 1.0565 1.1091 4.7441 

8 0.8907 0.8514 4.4041 1.1795 1.1182 5.2035 0.7877 0.8185 3.7554 1.0555 1.1073 4.6793 

10 0.8903 0.8512 4.3842 1.1790 1.1179 5.1828 0.7875 0.8181 3.7344 1.0552 1.1068 4.6578 

𝛾 𝐶𝑎𝑠𝑒 5 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , ∅ = 4 

3 0.8907 0.8714 2.1668 1.1795 1.1582 1.8058 0.7877 0.7985 1.3710 1.0555 1.0773 2.0654 

5 0.7291 0.7021 3.7032 1.0180 0.9834 3.3988 0.6494 0.6753 3.9882 0.9270 0.9642 3.6375 

7 0.6687 0.6376 4.6508 0.9576 0.9073 5.2527 0.5928 0.6221 4.926 0.8635 0.9119 5.6051 

9 0.6393 0.5969 6.6322 0.9282 0.8694 6.3348 0.5627 0.5964 5.9889 0.8084 0.8643 6.9149 

∅ 𝐶𝑎𝑠𝑒 6 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 

2 0.8399 0.7811 6.9958 1.1287 1.0597 6.0335 0.7336 0.7823 6.2334 0.9936 1.0612 6.7733 

4 0.8907 0.8514 4.4041 1.1795 1.1182 5.2035 0.7877 0.8185 3.7554 1.0555 1.1073 4.6793 

6 0.9197 0.8929 2.9107 1.2086 1.1643 3.6618 0.8192 0.8389 2.3458 1.0914 1.1278 3.2258 

8 0.9385 0.9203 1.9401 1.2274 1.1947 2.6620 0.8400 0.8522 1.4295 1.1150 1.1410 2.2826 
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Table 3.  Comparative analysis for M [X]/𝐸4 (𝐻2, 𝑀, 𝑀)/1 and M [X]/𝐸4 (𝐻2, D, 𝐷)/ 1 queueing systems with an 

unreliable server and delaying vacations. 
 𝑀[𝑥]/𝐸4(𝐻2, 𝑀, 𝑀)/1 𝑀[𝑥]/𝐸4(𝐻2, 𝐷, 𝐷)/1 

 𝑈(1,5) 𝐺𝑒𝑜(
1

3
) 𝑈(1,5) 𝐺𝑒𝑜(

1

3
) 

 E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev E(W) 𝐸(W̃) Dev 

λ 𝐶𝑎𝑠𝑒 1 :𝜇=6 , 𝛼=0.01 ,𝛽=8 , 𝛾=3 ,∅=4 

1 0.7431 0.7160 3.6437 1.0030 0.9554 4.7399 0.6063 0.6262 3.1629 0.8450 0.8861 4.6320 

1.1 0.8151 0.7824 4.0015 1.1039 1.0495 4.9329 0.6709 0.6966 3.6864 0.9371 0.9855 4.9057 

1.3 1.0178 0.9656 5.1307 1.3895 1.3130 5.5105 0.8503 0.8966 5.1657 1.1968 1.2683 5.6398 

1.5 1.3784 1.2815 7.0308 1.8996 1.7760 6.5028 1.1624 1.2548 7.3663 1.6561 1.7759 6.7488 

𝜇 𝐶𝑎𝑠𝑒 2 :λ=1.1  , 𝛼=0.01 ,𝛽=8 , 𝛾=3 ,∅=4 

5 1.1989 1.1531 3.8161 1.6581 1.5808 4.6593 1.0400 1.0804 3.7401 1.4665 1.5396 4.7479 

5.5 0.9618 0.9242 3.1982 1.3165 1.2528 4.8381 0.8121 0.8434 3.7171 1.1397 1.1980 4.8693 

6 0.8151 0.7824 4.0015 1.1039 1.0495 4.9329 0.6709 0.6966 3.6864 0.9371 0.9855 4.9057 

6.5 0.7157 0.6866 4.0664 0.9594 0.9117 4.9730 0.5754 0.5973 3.6545 0.7998 0.8409 4.8917 

𝛼 𝐶𝑎𝑠𝑒 3 :λ=1.1  ,𝜇=6 ,𝛽=8 , 𝛾=3 ,∅=4 

0.005 0.8140 0.7819 3.9489 1.1025 1.0487 4.8791 0.6704 0.6956 3.6291 0.9363 0.9841 4.8487 

0.01 0.8151 0.7824 4.0015 1.1039 1.0495 4.9329 0.6709 0.6966 3.6864 0.9371 0.9855 4.9057 

0.05 0.8232 0.7868 4.4206 1.1153 1.0555 5.3611 0.6756 0.748 4.1425 0.9435 0.9969 5.3593 

0.1 0.8366 0.7924 4.9407 1.1298 1.0632 5.8917 0.6815 0.7152 4.7071 0.9515 1.0114 5.9203 

𝛽 𝐶𝑎𝑠𝑒 4 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛾 = 3 , ∅ = 4 

3 0.8196 0.7853 4.1872 1.1098 1.0530 5.1187 0.6739 0.7011 3.8904 0.9408 0.9913 5.1033 

5 0.8165 0.7833 4.0668 1.1059 1.0506 4.9988 0.6718 0.6981 3.7580 0.9383 0.9874 4.9758 

8 0.8151 0.7824 4.0015 1.1039 1.0495 4.9329 0.6709 0.6966 3.6864 0.9371 0.9855 4.9057 

10 0.8146 0.7822 3.9800 1.1033 1.0491 4.9111 0.6707 0.6962 3.6630 0.9368 0.849 4.8826 

𝛾 𝐶𝑎𝑠𝑒 5 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , ∅ = 4 

3 0.8151 0.7954 2.4169 1.0555 1.0773 2.0654 0.7523 0.7211 4.1477 0.9371 0.9655 3.0306 

5 0.6929 0.6631 4.3007 0.9270 0.9642 3.6375 0.6615 0.6333 4.2630 0.8657 0.9042 4.4473 

7 0.6384 0.5994 6.1090 0.8635 0.9119 5.6051 0.6283 0.5990 4.6633 0.8141 0.8658 6.3506 

9 0.6152 0.5698 7.3797 0.8084 0.8643 6.9149 0.6124 0.5812 5.0947 0.7723 0.8312 7.6266 

∅ 𝐶𝑎𝑠𝑒 6 ∶ λ = 1.1  , 𝜇 = 6 , 𝛼 = 0.01 , 𝛽 = 8 , 𝛾 = 3 

2 0.7772 0.7259 6.5972 1.0660 0.9848 7.6194 0.6291 0.6746 6.7554 0.8858 0.9635 8.0595 

4 0.8151 0.7824 4.0015 1.1039 1.0495 4.9329 0.6709 0.6966 3.6864 0.9371 0.9855 4.9057 

6 0.8366 0.8156 2.5141 1.1255 1.0872 3.3987 0.6944 07086 2.0064 0.9657 0.9975 3.1825 

8 0.8506 0.8374 1.5505 1.1394 1.1120 2.4066 0.7093 0.7161 0.951 0.9839 1.0050 2.1021 

6.1.Sensitivity Analysis 

To assess the robustness of the proposed maximum entropy approach, we conducted a sensitivity 

analysis by varying key system parameters λ, 𝜇 ,α, β, γ and ∅ as outlined in Section 4. For 

instance, increasing the arrival rate λ from 1 to 1.5 results in a higher traffic intensity 𝜌𝑇, which 

increases the expected waiting time E(W) due to greater system congestion. Conversely, 

increasing the repair rate β from 3 to 10 reduces E(W) by minimizing server downtime. These 

trends are consistent across the for M [X]/𝐸𝑘 (𝐻2, 𝐸𝑘, 𝐷)/1  and M [X]/𝐻2 (𝐸𝑘, 𝐸𝑘, 𝐷)/1 systems, 

indicating the stability of the maximum entropy approximations. 

To validate the numerical results, we performed simulations for the  𝑀[𝑋]/𝐺/1 queueing system 

using the same parameter settings. The simulated waiting times closely match the exact and 

approximate results, with relative errors below 5% for most cases, confirming the accuracy of the 

maximum entropy method. A case study application to a computer network server with batch 
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arrivals and periodic maintenance (delaying vacations) further demonstrates the practical 

relevance of the model. 

7. Conclusions 

In this paper, we have developed approximate steady-state solutions for the 𝑀[𝑋]/𝐺/1 queueing 

system with an unreliable server and delaying vacations by using maximum entropy principle. A 

comparative analysis was made between exact results and approximate results; For this purpose, 

use six cases which are special cases of 𝑀[𝑋]/𝐺/1 queueing system with an unreliable server and 

delaying vacations; results has shown that the relative error percentages are very small; Therefore, 

it can be claimed that the maximum entropy method is sufficiently robust to to estimate the 

interesting measures (service time distribution functions) of the 𝑀[𝑋]/𝐺/1 queueing system with 

an unreliable server and delaying vacations.It shows that the use of the maximum entropy 

principle is accurate enough for practical purposes and provides a useful method for analyzing 

complex queuing systems. This principle can be employed to assess the most appropriate 

probability distributions for queueing scenarios in a variety of widespread industrial issues. 
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