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ARTICLE INFO ABSTRACT
Article history: This paper deals with a single unreliable server and with delaying
Received 2 April 2025 vacations which has Poisson arrivals and general distribution for the
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Accepted 13 August 2025 service times. The server can be activated at arrival epochs or
Available online 19 November 2025 deactivated at service completion epochs. The maximum entropy
principle is increasingly relevant to queueing systems. The principle of
fﬂeay)‘(’;’r?]rud;:emmpy maximum  entropy (PME) presents an impartial framework as a
MIX1/G /1 queueing system promising method to examine cqmplex queuing processes. We use
Delaying vacations maximum entropy principle to derive the approximate formulas for the
Unreliable server steady-state probability distributions of the queue length. The

maximum entropy approach is then used to give a comparative perusal
between the system’s exact and estimated waiting times. We
demonstrate that the maximum entropy approach is efficient enough
for practical purpose and is a feasible method for approximating the
solution of complex queueing systems.

1. Introduction

Queuing theory is one of the branches of stochastic processes, which is of interest to many
researchers of statistics and other sciences, both in terms of application and theory; By using it, the
systems that provide service to customers are studied. Among the uses of queuing models are
telephone conversations, digital communication, computer networks, inventory control,
production line flow, and transportation systems. One of the important goals of these models is
optimal service to customers. Optimization (reducing the length of the queue and reducing the
waiting time) performed using appropriate cost functions and metrics such as the expected number
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of customers in the system, the expected waiting time of customers in the system, the expected
period of employment (or the period of unemployment) servers and etc is done. Previous studies,
such as [6], analyzed the MX1/G /1 queueing system with a reliable server and delaying vacations,
while [7] examined unreliable servers with retrial and multiphase optional services. Nithya and
Haridass [1] , [2] explored cost optimization and maximum entropy analysis for bulk queueing
systems with vacations and breakdowns. Unlike these works, this paper uniquely combines the
analysis of an unreliable server with delaying vacations in an MX1/G /1 queueing system, using
the maximum entropy principle to derive approximate steady-state probability distributions. Our
contribution lies in: (1) extending the maximum entropy approach to handle the combined effects
of server breakdowns and delaying vacations, (2) providing a comparative analysis of exact and
approximate waiting times across multiple distribution scenarios (e.g., Erlang, hyperexponential,
deterministic), and (3) demonstrating the robustness of the maximum entropy method for practical
queueing system analysis, particularly in industrial applications such as computer networks and
production lines.

Maximum entropy is used to reduce uncertainty of knowledge. After several stages of information
gathering, we will arrive at a unique set of possibilities, and at the end, uncertainty will disappear
completely. This principle is used to use all available information and avoid using any additional
information. Therefore, the use of any distribution other than the maximum entropy requires the
use of additional information that is not available. [1] considered a variant timer policy for the
MX /G /1 queueing system with an unreliable server and delaying vacations. [2] presented a study
of unreliable server retrial bulk queue with multiphase optional service is analyzed by
incorporating the features of balking, Bernoulli vacation and Bernoulli feedback. they perform a
comparative study of the exact waiting time obtained by the supplementary variable technique and
the approximate waiting time derived by using maximum entropy principle by taking the
numerical illustration. To verify the outcomes of the model, numerical illustrations and senstivity
analysis have been accomplished. [3] conducted a stochastic modelling and the maximum entropy
analysis of the M¥/G/1 queuing system with vacation interruption, balking and startup. In the
assessment of a bulk waiting framework with malfunction, regulated arrival, and numerous
vacations, further [4] looked at optimisation of costs and the highest level of entropy analysis. [5]
have looked into maximum entropy findings and optimization results for M* /G /1 reiterate G-
queue with delayed repair. Moreover, [6] used particle swarm optimization technique to obtain the
optimal costs of a reiterate G-queueing framework with working malfunction and working leisure
including batch arrival. [7] The aspects of general service bulk arrival retrial G-queue including
working vacation, state-dependent arrival, priority users, and working breakdown are all explored
in this article. Initially, they have estimated performance metrics including orbit size and long-run
probabilities in this research work. The maximum entropy approach is then used to give a
comparative perusal between the system’s exact and estimated waiting times. [8] the N policy
M/G/1 queueing system with a removable server was analyzed by using the maximum entropy
method. they used maximum entropy principle to derive the approximate formulas for the steady-
state probability distributions of the queue length. The maximum entropy approach is then used to
give a comparative perusal between the system’s exact and estimated waiting times. they
demonstrate that the maximum entropy approach is efficient enough for practical purpose and is a
feasible method for approximating the solution of complex queueing systems. Apart from that a
bi-objective optimization model is developed to diminish both consumers waiting times and
estimated costs simultaneously. In this research, we want to study the M*1/G /1 queuing system
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an unreliable server and delaying vacations. For this purpose, first introduce the system, then
introduce the symbols and probabilities used during the research. Next, we obtain the maximum
entropy solutions for the analysis of the MX1/G /1 queueing system with an unreliable server and
delaying vacations; And finally, we obtain the expected waiting time in the queue using the
classical method and the maximum entropy method and perform a comparative analysis between
the approximate results and the exact results for the distribution of different vacations, service
time and repair time.

2. MX1/G /1 queueing system with an unreliable server and delaying vacations

A server with delaying vacations waits for a random time (T) upon returning to an empty system.
If no customers arrive during (T), the server shuts down; otherwise, it resumes service.

In this system customers arrive in batches to occur according to a compound Poisson with rate A.
X, Indicates the number of customers belonging to the kth arrival batch, where X, , (k = 1,2, ...)
Are with a common distribution.

P(X,=n)=1X, , n=12,..

Arriving customers within batches to the server form a single waiting line and are served in the
order of their arrivals (First-Come, First-Served, FCFS discipline). The server can serve only one
customer at a time. The service time provided by a single server is an independent and identically
distributed (iid) random variable (S) with a general distribution function S(t). Unreliable server
means a server that breaks down unpredictably. The server is subject to breakdowns at any time
with a Poisson breakdown rate o when he is working (The distribution of the time between two
breakdowns is Poisson). Whenever the server fails, he is immediately repaired at a repair facility,
where the repair time is an (iid) random variable (R) with a general distribution function R(t). If
the server breaks down while serving customers, he is sent for repair and the customer who has
just being served should wait for the server back to complete his remaining service. Immediately
after the server is fixed, he starts to serve customers until the system is empty, and the service time
is cumulative. delaying vacations server means that if the server returns after a random period of
time, and finds the system is empty, the server considers a random time T and waits dormant in
the system, and if no group enters the system during this period. The server goes to shut down, but
if during the idle period T, at least one customer arrives, the server starts serving and continues to
provide the service until the system is empty again. A customer who arrives and finds the server
busy or broken down must wait in the queue until a server is available. Although no service occurs
during the repair period of a broken server, customers continue to arrive according to a Poisson
process. It is assumed that the time between two arrivals, group sizes, service times, failure times,
repair times, shutdown times, and dormant period in the system are independent of each other.

3. Notations and probabilities

In order to be familiar with the symbols and possibilities of this system in this research, we
introduce them in this section.

A: arrival rate (parameter units: customers per second).
W mean service time (parameter units: services per second).
a: server breakdown rate (parameter units: breakdowns per second).
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[: repair time rate (parameter units: repairs per second).

y: vacation time rate (parameter units: shutdowns per second).
@: timer duration rate (parameter units: per second).

X}.: the number of customers belonging to the kth arrival batch

T: arandom variable, which indicates the time when the server is idle in the system.
V: a random variable, which indicates the time when the server is in shutdown.

S(t): general distribution of service time.

R(t): general distribution of repair time.

pr- traffic intensity, where pp = AE[X]E[S](1 + aE[R]). In the steady state p < 1.
F: A random variable that indicates the time to complete the service to the customer, which

includes the time to serve the customer and the time to repair the server.
E[F]: first moment of the service completion time, which is obtained as follows:

E[F] = E[S](1 + aE[R]) 1)

E(F?): second moment of the service completion time

E[F?] = (1 + aE[R])?E[S?] + aE[S]E[R?] )

Probability that no arrivals in T:

(o0}

TQ) = f e~Md Pr(T < t] ©))

0

Probability that no arrivals in V:

[oe]

V(D) = f e~ d prlv < v] 4)
0

[To(n) = probability that there are n customers in the system when the server is dormant idleness
in the system (n = 0,1,2, ...).

[T:(n) = probability that there are n customers in the system when the server is on vacation
(n=0,12..).

[1.(n) = probability that there are n customers in the system when the server is in operation
n=12..).

[1s(n) = probability that there are n customers in the system when the server is operational but
breaks down (n = 1,2, ...).

For the MX1/G /1 queueing system with an unreliable server and delaying vacations, we have the
following five results [9] and [10]:

probability that the server is dormant in the system:
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T -T)IA - pp
Zl'lo() DI DIA = pr)

AV +VDI-T)] T ®)

probability that the server is on vacation

AE[VI(1 - pp)
Z ™ = voon -t - ™ ©)

probability that the server is busy

> () = AEIELS] = p ™

probability that the server is broken down

> M5(m) = AEIXIE[SIaE[R] = paE[R] (®)

exact expected number of customers in the system

(AE[XD2E[F?]  AE[FIE[X(X — 1] RE[X]|E[V?]

s = 20— AEMERFD T 20 —2eEr T EREF Y T s oo =t aop ®)

4. maximum entropy

Exact probability distributions of theMX1/G /1 queueing system with an unreliable server and
delaying vacations have not been found. Therefore, the main reason why we use the maximum
entropy principle for a complex queueing system is to estimate probability distributions given
several known results is necessary.

Following [11], the entropy function Y of the M*1/G /1 queueing system with an unreliable
server and delaying vacations is formed as:

= Mot nTlo() = ) Ty M) 1Tl (1) = > T ML, (1) = Y[l () In Tl () (10)
n=0 n=0 n=1 n=1

To obtain the maximum entropy solutions in this system, we must maximize the above function to
the following constraints.

(1) normalizing condition:

(oo}

Zno(n)+inl(n>+inz(n>+in3(n)=1 (1)

(2) the probability that the server is on vacations
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> 1L ) = (12)

(3) the probability that the server is busy

(oo}

Z M () = (13)

(4) the probability that the server is broken down

> s ) = pak[R] (14)
n=1

(5) the expected number of customers in the system

Z nllo () + Z nll, () + Z nll, () + Z nlls () = Ls (15)

n=0

where L, is given by (9).

(11) is multiplied by w4, (12) is multiplied by w,, (13) is multiplied by w5, (14) is multiplied by
wy, and (15) is multiplied by w<. Thus the Lagrangian function y is given by:

Z o () InTly () Z M ) In Ty () = Z e @) InTL, () - Z s () In T, ()

—wl[Zm(nHan(wan(n)+Zn3(n)—1l —wZIZm(n)

- ml - s lz Mo () — pl -, Z s () - pak [R]‘ (16)
n=1 n=1
—ws [i n[lo(n) + i n[]; (n) + i n[l, (n) + i n[]z (n) — le
=0 n=0 n=1 n=1
Refer to Joe and Chen (2008) for details on how the proof is established

Mo(n) = (1 — Z; +’Z) (1 fsp: iFLS)n , n=01,.. 17)
Mi(n) = (1 — :;Jr Ls) (1 fsp_F ’fLS)n , n=01,.. (18)
() = (Ls £ pF) (1 fsp: iFLS)n , n=12,.. (19)

paE(R) Ls—pr \" _
[l(n) = ( pF> (1 s Ls) , n=12,.. (20)
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5. Expected waiting time

In this section, we obtain approximate and exact formulas for the expected waiting time in this
queuing system.

The exact expected waiting time in the queue

Let E(W) denote the exact expected waiting time in the queue. Using (9) and Little's formula, we
have:

EW) = AE[X] —EF)
_ JEIXIE(F?) E(F)E[X(X = 1)] AE(V2) (21)
~2(1 - AE[X]E(F)) * 2E[X](1 — AE[X]E(F)) * 20E() + V(D1 =T}
The approximate expected waiting time in the system
Using the [1] results, the approximate expected waiting time in the queue is as follows:
 (E[S] E[X(X — 1)] > (E[V?] E[S] (E[X(X — 1]
nZ { T, }Ho(n) + ;{ZE[V] +nE[S] + = < BT )} I, (n)
c S] E[X(X -1
by {nE[s g LA @)
n=0
¢ | EIS](EIX (X = 1]
2 gty e+ 5 (e
or equivalently equal to:
7y EIS] EX(x = 1) | E[v?] | EIR’] o
EW) ==~ *3 Z ( + S FTR] 3(n)> Z Z ll, () (23)

6. Comparative Analysis of Queueing Systems

This section evaluates the accuracy of the maximum entropy method by comparing exact and
approximate expected waiting times E(W) for the MX1/G /1 queueing system with an unreliable
server and delaying vacations. The analysis considers six cases with varying distributions (Erlang,
hyperexponential, deterministic, exponential) for service time, repair time, vacation time, and
timer duration. The relative error is calculated using MATLAB as:

|exact value — approximate value|

Dev = x 100
exact value

Tables 1-3 summarize the results for the following systems:

(1) Comparative analysis for M X/E, (H,,E,,D)/1 and MX/H, (E, E,,D)/1 queueing
systems with an unreliable server and delaying vacations.

(2) Comparative analysis for M X! /D (E,, H,, M)/1 and M X1/D (E,, M, H,) /1 queueing systems
with an unreliable server and delaying vacations.

(3) Comparative analysis for M X1 /E, (H,,M,M)/1 and M X1 /E, (H,,D, D)/ 1 queueing systems
with an unreliable server and delaying vacations.



326 M. Mohsenzadeh et al./ Computational Sciences and Engineering 4(2) (2024) 319-330

Here, denote M by exponential, D by deterministic, Ex by k-stage Erlang, and Hy by k-stage
hyperexponential.

In all calculations, to obtain the first moment, the second moment and the moment generating
function of the distributions, the following points should be taken into account:

For X has an exponential distribution with parameter 0, then:

1

) 2

0
E(et*) = ¢

if X has a deterministic distribution with parameter 6, then:
QO =+
0

) 2

E(e™) =e'lo

if X has a k-stage hyperexponential distribution, then:

k
E(X)=Z&
£ 0;
=1
k
) 2
E) =) Sy
Ly,
i=1

k
i0;
E(e") = Z (91-9— 0

that p; is the probability that X chooses the exponential distribution with parameter 6;.

if X has a k-stage Erlang distribution with parameter 0, then:

ECX) =~
0=
k+1
E(X) = kzz
ko \*
E(etx)z(ke—t)

In all the numerical examples, for H, distribution, we assume that g, = 1/4, q; = 3/4, as well as
91 = que and 92 = 2q26
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Choosing two arrival batch sizes are distributed as uniform (U(1, 5)) and geometric (Geo(1/3)),

respectively. The values of different system parameters A, o, B, y and @ are considered in the
following six cases:

» u=5,a=0/05p=10,y= / , @ = 5 and varying the values of A.

> A= 1/2 a=0/05, B =10, 2/5, @ = 5 and varying the values of p.
> A=1/2,u=5,p=10,y= / , ® = 5 and varying the values of a.

> A=1/2,nu= 5,(1-0/0 y=2/5 @ = 5 and varying the values of p.
> x =1/2,u=5,0=0/05,p =10, @ =5 and varying the values of y

> A=1/2,u=5,0=0/05,p=10 y = 2/5 and varying the values of Q)

(1) Comparative analysis for MXl/E, (H,,E,,D)/1 and M X/H, (E, E,,D)/1 queueing
systems with an unreliable server and delaying vacations.

Table 1. comparative analysis between E(W) and E(W) for M XI/E, (H,, E,,D)/1 and M XI/H, (E,, E,, D)/1
queueing systems with an unreliable server and delaying vacations.

M™/E,(H,, E,, D)/1 M /H,(E,, E,,D)/1
U(1,5) Geo(%) U(1,5) Geo(%)
EW)| E(W)| Dev| EW)| E(W)| Dev| EW)| E(W)| Dev| EW)| E(W)| Dev
A Casel:u=6,a=001,=8,y=3,0=4

1 0.6813| 0.6560| 3.7001| 0.9412| 0.8944| 4.9727| 0.7966] 0.8055| 0.7322| 1.0596| 1.0438| 1.4854
1.1 | 0.7523| 0.7211] 4.1477| 1.0412| 0.9868| 5.2183| 0.8970| 0.8830[ 1.5610f 1.1859| 1.1488 3.1310
1.3 | 0.9534| 0.9015| 5.4452| 1.3251| 1.2472| 5.8753| 1.1735| 1.1398| 2.8717| 1.5452| 1.4656| 5.1514
15| 1.3125] 1.2353| 5.8745| 1.8337| 1.7073| 6.8919| 1.6686| 1.5999| 4.1172| 2.1897| 2.0425| 6.7223
Case2:A2=11,a=001,=8,y=3,0=4
1.1361 1.0902| 4.0459| 1.5953| 1.5160| 4.9722| 1.4123] 1.3378| 5.2695| 1.8715| 1.7637| 5.7589

5.5 | 0.8991 0.8621| 4.1076| 1.2537| 1.1893| 5.1421| 1.0929| 1.0544| 3.5300| 1.4476| 1.3815| 4.5674

6 0.7523| 0.7211] 4.1477| 1.0412| 0.9868| 5.2183| 0.8670| 0.8830[ 1.5610f 1.1859| 1.1488 3.1310

6.5 | 0.6529| 0.6257| 4.1729| 0.8966| 0.8497| 5.2363| 0.7656| 0.7695 0.5044| 1.0093| 0.9935 1.5696

a Case3:A=11,u=6,0=8,y=3,0=4
0.005] 0.7513| 0.7205| 4.0931| 1.0397| 0.9861| 5.1631| 0.8958| 0.8824( 1.4958| 1.1843| 1.1479 3.0680

0.01| 0.7523| 0.7211| 4.1477) 1.0412| 0.9868| 5.2183| 0.8970| 0.8830| 1.5610[ 1.1859| 1.1488| 3.1310
0.05| 0.7605| 0.7256| 4.5829| 1.0526| 0.9930| 5.6572| 0.9070| 0.8881] 2.0796| 1.1991| 1.1555| 3.6325

0.1 | 0.7708| 0.7314| 5.1222| 1.0670] 1.0009| 6.2007| 0.9197| 0.8947| 2.7217) 1.2159| 1.1642| 4.2529

o=

B Case4:A=11,u=6,a=001,y=3,0=4

3 0.7568| 0.7240| 4.3415| 1.0470| 0.9904| 5.4092| 0.9017| 0.8856 1.7839| 1.1919| 1.1520| 3.3445
5 0.7538| 0.7220| 4.2158| 1.0431| 0.9880| 5.2860| 0.8986| 0.8839| 1.6404| 1.1880| 1.1499 3.2074
8 0.7523| 0.7211] 4.1477| 1.0412| 0.9868| 5.2183| 0.8970| 0.8830[ 1.5610f 1.1859| 1.1488 3.1310
10 | 0.7518| 0.7208| 4.1254| 1.045| 0.9865| 5.1959| 0.8965| 0.8827| 1.5347| 1.1852| 1.1484| 3.1056

Case5:A2=11,u=6,a=001,3=8,0=4
0.7523| 0.7211] 4.1477| 1.0412| 0.9978| 4.1682| 0.8970| 0.8830| 1.5610| 1.1859| 1.1688 1.4419
0.6615| 0.6333| 4.2630| 0.9504| 09052| 4.7558| 0.8062| 0.7803| 3.2126| 1.0951| 1.0652| 2.7304
0.6283| 0.5990| 4.6633| 0.9172| 0.8669| 5.4841| 0.7730| 0.7368| 4.6830| 1.0619| 0.9998 5.9327
0.6124| 0.5812| 5.0947| 0.9012| 0.8443| 6.3138| 0.7571| 0.7168| 5.3229| 1.0121] 0.9489| 6.2444
Case6:A2=11,u=6,0=0.01,=8,y=3
0.7191| 0.6873| 4.4221] 1.0079| 0.9436| 6.3796| 0.8638| 0.8249 4.5033| 1.1527| 1.0812 6.2037
0.7523| 0.7211] 4.1477| 1.0412| 0.9868| 5.2183| 0.8970| 0.8830| 1.5610| 1.1859| 1.1488 3.1310
0.7705| 0.7515| 2.4626| 1.0594| 1.0225| 3.4828| 0.9153| 0.9159| 0.0652| 1.2041| 1.1868| 1.4387
0.7820| 0.7710f 1.4002| 1.0709| 1.0453| 2.3903| 0.9267| 0.9368] 1.0914| 1.2156| 1.2111] 0.3729

oA~ |lO|NO|w|R
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(2) Comparative analysis for M Xl/D (E,, H,, M)/1 and M X1/D (E,, M, H,)/1 queueing systems
with an unreliable server and delaying vacations.

Table 2. comparative analysis between E(W) and E(W) for M XI/D (E,, H,,M)/1 and M Xl/

D (E,, M, H,)/1 queueing systems with an unreliable server and delaying vacations.

M™ /D(E,, Hy, M)/1

M™/D(E,, M, H;)/1

U(1,5) Geo(%) U(1,5) 660(%)
EW)| E(W)| Dev | EW)| E(W)| Dev | EW)| E(W)| Dev | EW)| E(W)| Dev
A Casel:u=6,a=001,8=8,y=3,0=4
1 0.8179| 0.7842| 4.1215| 1.0778| 1.0234| 5.0497| 0.7210| 0.7464| 3.4041| 0.9611| 1.0063| 4.4918
1.1 | 0.8907| 0.8514| 4.4041| 1.1795| 1.1182| 5.2035| 0.7877| 0.8185| 3.7554| 1.0555| 1.1073| 4.6793
1.3 | 1.0950| 1.0365| 5.3392| 1.4666| 1.3834| 5.6764| 0.9714| 1.0213| 4.8914| 1.3197| 1.3930| 5.2667
15 | 1.4569| 1.3545| 7.0252| 1.9780| 1.8485| 6.5494| 1.2876| 1.3819| 6.8244| 1.7832| 1.9030| 6.2958
u Case2:2=11,a=001,8=8,y=3,0=4
5 1.2744| 1.2223| 4.0887| 1.7226| 1.6496| 4.8487| 1.1591| 1.2022| 3.5890| 1.5879| 1.6614| 4.4272
5.5 | 1.0374] 0.9932| 4.2650| 1.3921| 1.3214| 5.0731| 0.9297| 0.9652| 3.6776| 1.2593| 1.3199| 4.5911
6 0.8907| 0.8514| 4.4041| 1.1795| 1.1182| 5.2035| 0.7877| 0.8185| 3.7554| 1.0555| 1.1073| 4.6793
6.5 | 0.7913| 0.7557| 4.5083| 1.0350| 0.9805| 5.2702| 0.6917| 0.7191| 3.8195| 0.9174| 0.9628| 4.7180
a Case3:A=11,u=6,=8,y=3,0=4
0.005| 0.8897| 0.8510| 4.3546| 1.1782| 1.1175| 5.1520| 0.7872| 0.8175| 3.7033| 1.0548| 1.1060| 4.6258
0.01| 0.8907| 0.8514| 4.4041| 1.1795| 1.1182| 5.2035| 0.7877| 0.8185| 3.7554| 1.0555| 1.1073| 4.6793
0.05| 0.8983| 0.8552| 4.7995| 1.1904| 1.1236| 5.6138| 0.7917| 0.8261| 4.1702| 1.0611| 1.1182| 5.1052
0.1 | 0.9080| 0.8599| 5.2909| 1.2042| 1.1304| 6.1231| 0.7966| 0.8358| 4.6853| 1.0682| 1.1320| 5.6332
B Case4:2=11,u=6,a=0.01,y=3,0=14
3 0.8944| 0.8525| 4.5735| 1.1846| 1.1209| 5.3778| 0.7898| 0.8222| 3.9335| 1.0583| 1.1124| 4.8604
5 0.8919| 0.8521| 4.4645| 1.1813| 1.1191| 5.2659| 0.7884| 0.8197| 3.8188| 1.0565| 1.1091| 4.7441
8 0.8907| 0.8514| 4.4041| 1.1795| 1.1182| 5.2035| 0.7877| 0.8185| 3.7554| 1.0555| 1.1073| 4.6793
10 | 0.8903| 0.8512| 4.3842| 1.1790| 1.1179| 5.1828| 0.7875| 0.8181| 3.7344| 1.0552| 1.1068| 4.6578
y Case5:A=11,u=6,a=001,4=8,0=4
3 0.8907| 0.8714| 2.1668| 1.1795| 1.1582| 1.8058| 0.7877| 0.7985| 1.3710| 1.0555| 1.0773| 2.0654
5 0.7291| 0.7021| 3.7032| 1.0180| 0.9834| 3.3988| 0.6494| 0.6753| 3.9882| 0.9270| 0.9642| 3.6375
7 0.6687| 0.6376| 4.6508| 0.9576| 0.9073| 5.2527| 0.5928| 0.6221| 4.926 | 0.8635| 0.9119| 5.6051
9 0.6393| 0.5969| 6.6322| 0.9282| 0.8694| 6.3348| 0.5627| 0.5964| 5.9889| 0.8084| 0.8643| 6.9149
@ Case6:2=11,u=6,a=0.01,8=8,y=3
2 0.8399| 0.7811| 6.9958| 1.1287| 1.0597| 6.0335| 0.7336| 0.7823| 6.2334| 0.9936| 1.0612| 6.7733
4 0.8907| 0.8514| 4.4041| 1.1795| 1.1182| 5.2035| 0.7877| 0.8185| 3.7554| 1.0555| 1.1073| 4.6793
6 0.9197| 0.8929| 2.9107| 1.2086| 1.1643| 3.6618| 0.8192| 0.8389| 2.3458| 1.0914| 1.1278| 3.2258
8 0.9385| 0.9203| 1.9401| 1.2274| 1.1947| 2.6620| 0.8400| 0.8522| 1.4295| 1.1150| 1.1410| 2.2826

(3) Comparative analysis for M Xl/E, (H,,M,M)/1 and M X/E, (H,,D,D)/ 1 queueing
systems with an unreliable server and delaying vacations.
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Table 3. Comparative analysis for M X1 /E, (H,, M,M)/1 and M XI/E, (H,,D, D)/ 1 queueing systems with an
unreliable server and delaying vacations.

M™/E,(Hy, M,M)/1 M™/E,(H,, D,D)/1

u(Ls) Geo() U(Ls) Geo()

EW)| E(W)| Dev | EW)| E(W)| Dev | EW)| E(W)| Dev| EW)| E(W)| Dev

Case 1 :.u=6, a=0.01,5=8 ,y=3 ,0=4

1 0.7431| 0.7160| 3.6437| 1.0030| 0.9554| 4.7399| 0.6063| 0.6262| 3.1629| 0.8450| 0.8861| 4.6320

1.1 | 0.8151] 0.7824| 4.0015| 1.1039| 1.0495| 4.9329| 0.6709| 0.6966| 3.6864| 0.9371| 0.9855| 4.9057

1.3 | 1.0178| 0.9656| 5.1307| 1.3895| 1.3130| 5.5105| 0.8503| 0.8966| 5.1657| 1.1968| 1.2683| 5.6398

1.5 | 1.3784| 1.2815| 7.0308| 1.8996| 1.7760| 6.5028| 1.1624| 1.2548| 7.3663| 1.6561| 1.7759| 6.7488

u Case 2 :2=1.1 , a=0.01,5=8 ,y=3 ,0=4

5 1.1989| 1.1531| 3.8161| 1.6581| 1.5808| 4.6593| 1.0400| 1.0804| 3.7401| 1.4665 1.5396| 4.7479

55 | 0.9618| 0.9242| 3.1982| 1.3165| 1.2528| 4.8381| 0.8121| 0.8434| 3.7171] 1.1397| 1.1980| 4.8693

6 0.8151| 0.7824| 4.0015| 1.1039| 1.0495| 4.9329| 0.6709| 0.6966| 3.6864| 0.9371| 0.9855| 4.9057

6.5 | 0.7157| 0.6866| 4.0664| 0.9594| 0.9117| 4.9730| 0.5754| 0.5973| 3.6545| 0.7998| 0.8409| 4.8917

a Case 3 :A=1.1 ,u=6 ,=8,y=3,0=4

0.005| 0.8140| 0.7819| 3.9489| 1.1025| 1.0487| 4.8791| 0.6704| 0.6956| 3.6291| 0.9363| 0.9841| 4.8487

0.01| 0.8151| 0.7824| 4.0015| 1.1039| 1.0495| 4.9329| 0.6709| 0.6966| 3.6864| 0.9371] 0.9855| 4.9057

0.05| 0.8232| 0.7868| 4.4206| 1.1153| 1.0555| 5.3611| 0.6756| 0.748 | 4.1425| 0.9435| 0.9969| 5.3593

0.1 | 0.8366] 0.7924| 4.9407| 1.1298| 1.0632| 5.8917| 0.6815| 0.7152| 4.7071| 0.9515| 1.0114| 5.9203

Case4:2=11,u=6,a=001,y=3,0=4

0.8165| 0.7833| 4.0668| 1.1059| 1.0506| 4.9988| 0.6718| 0.6981| 3.7580| 0.9383| 0.9874| 4.9758

B
3 0.8196| 0.7853| 4.1872| 1.1098| 1.0530| 5.1187| 0.6739| 0.7011| 3.8904| 0.9408| 0.9913| 5.1033
5
8

0.8151| 0.7824| 4.0015| 1.1039| 1.0495| 4.9329| 0.6709| 0.6966| 3.6864| 0.9371| 0.9855| 4.9057

10 | 0.8146| 0.7822| 3.9800| 1.1033| 1.0491| 4.9111| 0.6707| 0.6962| 3.6630| 0.9368| 0.849| 4.8826

Case5:2=11,u=6,a=0.01,8=8,0=4

0.8151| 0.7954| 2.4169| 1.0555| 1.0773| 2.0654| 0.7523| 0.7211| 4.1477| 0.9371] 0.9655| 3.0306

0.6929| 0.6631| 4.3007| 0.9270| 0.9642| 3.6375| 0.6615| 0.6333| 4.2630| 0.8657| 0.9042| 4.4473

0.6384| 0.5994| 6.1090| 0.8635| 0.9119| 5.6051| 0.6283| 0.5990| 4.6633| 0.8141| 0.8658| 6.3506

0.6152| 0.5698| 7.3797| 0.8084| 0.8643| 6.9149| 0.6124| 0.5812| 5.0947| 0.7723| 0.8312| 7.6266

Case6:2=11,u=6,a=001,=8,y=3

0.7772| 0.7259| 6.5972| 1.0660| 0.9848| 7.6194| 0.6291| 0.6746| 6.7554| 0.8858| 0.9635| 8.0595

0.8151| 0.7824| 4.0015| 1.1039| 1.0495| 4.9329| 0.6709| 0.6966| 3.6864| 0.9371| 0.9855| 4.9057

0.8366| 0.8156| 2.5141| 1.1255| 1.0872| 3.3987| 0.6944| 07086| 2.0064| 0.9657| 0.9975| 3.1825

OO NS O|INOWw=

0.8506| 0.8374| 1.5505| 1.1394| 1.1120| 2.4066| 0.7093| 0.7161| 0.951| 0.9839| 1.0050| 2.1021

6.1.Sensitivity Analysis

To assess the robustness of the proposed maximum entropy approach, we conducted a sensitivity
analysis by varying key system parameters A, @ ,0, B, v and @ as outlined in Section 4. For
instance, increasing the arrival rate A from 1 to 1.5 results in a higher traffic intensity p;, which
increases the expected waiting time E(W) due to greater system congestion. Conversely,
increasing the repair rate  from 3 to 10 reduces E(W) by minimizing server downtime. These
trends are consistent across the for M Xl /E, (H,,E,,D)/1 and M Xl/H, (E,, Ex,D)/) systems,
indicating the stability of the maximum entropy approximations.

To validate the numerical results, we performed simulations for the MX1/G /1 queueing system
using the same parameter settings. The simulated waiting times closely match the exact and
approximate results, with relative errors below 5% for most cases, confirming the accuracy of the
maximum entropy method. A case study application to a computer network server with batch
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arrivals and periodic maintenance (delaying vacations) further demonstrates the practical
relevance of the model.

7. Conclusions

In this paper, we have developed approximate steady-state solutions for the M!X1/G /1 queueing
system with an unreliable server and delaying vacations by using maximum entropy principle. A
comparative analysis was made between exact results and approximate results; For this purpose,
use six cases which are special cases of MX1/G /1 queueing system with an unreliable server and
delaying vacations; results has shown that the relative error percentages are very small; Therefore,
it can be claimed that the maximum entropy method is sufficiently robust to to estimate the
interesting measures (service time distribution functions) of the M*1/G /1 queueing system with
an unreliable server and delaying vacations.Ilt shows that the use of the maximum entropy
principle is accurate enough for practical purposes and provides a useful method for analyzing
complex queuing systems. This principle can be employed to assess the most appropriate
probability distributions for queueing scenarios in a variety of widespread industrial issues.
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