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 This paper presents a low voltage BJT-based smart temperature sensor 

with duty cycle  modulated output and inaccuracy of ±0.11 ◦C (3σ) and 

FOM resolution of about 1.4pJ. ◦C2 from −55◦C to 130◦C. This sensor 

can work with a supply voltage of 1.5V. It uses a BJT-based front-end 

to generate a proportional to absolute temperature voltage (VPTAT) and 

a complementary to absolute temperature voltage (VCTAT), which are 

then modulated to a duty-cycle output. Adding an integrator before the 

Schmitt trigger has increased the range of input changes of the Schmitt 

trigger. As a result, the hysteresis of the Schmitt trigger can be 

increased and it has better noise immunity. Implemented in a standard 

0.18-µm CMOS process, the sensor has an active area of about 

0.64mm2 and can work with 1.5V from -55◦C to 130◦C with an 

inaccuracy of ±0.11◦C (3σ). Power consumption is about 45uW. 
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1. Introduction  

The precise monitoring of temperature over an extended range is a fundamental requirement in 

numerous modern electronic systems, particularly in fields such as environmental sensing, 

biomedical devices, and industrial automation. Achieving high accuracy in temperature 

measurement is vital to ensure system reliability, efficiency, and safety. However, alongside 

accuracy, energy efficiency has become a key design constraint due to the widespread use of 

battery-powered systems and energy-harvesting technologies, which often impose stringent power 

budgets [1], [2]. 

To meet these performance and energy demands, smart temperature sensors based on 

complementary metal-oxide-semiconductor (CMOS) technology have attracted significant 
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attention. These sensors typically integrate a temperature-sensitive core with a signal readout 

mechanism within a compact footprint. CMOS technology enables the co-integration of sensing 

elements with on-chip signal processing circuitry, which is crucial for applications requiring 

scalability and cost-effectiveness.  

A variety of devices within standard CMOS processes can function as temperature-sensing 

elements. Common examples include bipolar junction transistors (BJTs), metal-oxide-

semiconductor field-effect transistors (MOSFETs), and resistive components [3]. Among these, 

BJT-based temperature sensors are particularly well-regarded for their capability to deliver high 

accuracy and stability across a wide temperature spectrum [4], [5]. The analog signals generated 

by these sensing elements must be converted into digital form for further processing and 

communication. This can be achieved using several types of converters, such as analog-to-digital 

converters (ADCs) [6], time-to-digital converters (TDCs) [7], and frequency-to-digital converters 

(FDCs) [8], each offering trade-offs in terms of resolution, area, and power consumption. 

In addition to traditional digitization techniques, encoding temperature information into a duty-

cycle-modulated (DCM) signal has become an appealing approach, particularly in industrial 

applications. This method provides a simple yet robust interface that seamlessly integrates with 

both digital systems, such as microcontrollers and embedded processors, and analog control 

systems like thermostats [7]. The DCM format also lends itself to efficient transmission over noisy 

channels, contributing to its practicality in real-world scenarios. 

As smart systems continue to evolve and operate in increasingly complex and noisy environments, 

the need for temperature sensors with enhanced noise immunity has become more critical than 

ever. Designing sensors that maintain high performance under such conditions is essential to 

ensure the reliability and accuracy of temperature-dependent systems in a wide range of operating 

conditions. 

In this brief, we present a BJT-based CMOS temperature sensor that includes a BJT front-end 

designed for improved accuracy and performance which can generate the proportional to absolute 

temperature (PTAT) voltage VPTAT and the complementary to absolute temperature (CTAT) 

voltage VCTAT, these temperature-dependent voltages are then proceeded by a voltage-to-duty-

cycle converter that can work with low voltage, this means that we reduce the supply voltage from 

1.8V to 1.5V. In this sensor, an integrator is added to use a Schmitt trigger with larger hysteresis 

to have better noise immunity and design the sensor with a power supply of 1.5V. The proposed 

sensor has an inaccuracy of about ±0.11 (from -55◦C to 130 ◦C) and FOM resolution of about 

1.4pJ. ◦C2 while maintaining a chip area of 0.64mm2 and power consumption is about 45uW.In a 

standard 0.18-µm CMOS process. 

2. Methods 

2.1. Basic Design 

In Figure 1, Under the control of a Schmitt trigger, a capacitor C is periodically charged by a 

current I1 up to a threshold voltage V2 and then discharged by a current I2 down to a threshold 

voltage V1 (Figure 1 (a)).  
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(a) 

 

 
(b) 

Figure 1. (a) basic circuit diagram; (b) VC node voltage versus time and output voltage of Schmitt trigger versus time. 

 

As can be deduced from the timing diagram shown in Figure 1 (b), the duty-cycle of the resulting 

output signal equals (Eq. (1) and Eq. (2)) [7]: 

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑇𝐻

𝑇𝐻 + 𝑇𝐿
=

𝑉𝑐. 𝐶
𝐼1

𝑉𝑐. 𝐶
𝐼1

+
𝑉𝑐. 𝐶

𝐼2

             (1) 

 

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝐼1

𝐼1 + 𝐼2
                                                 (2) 

 

In Figure 2 the base-emitter voltage of Q3 (VCTAT)produces Current in RCTAT (I2), which decreases 

by increasing the temperature. The difference between the base-emitter voltages of Q1 and 

Q2(ΔV=VBE1-VBE2), which increases with temperature (VPTAT), produces current in RPTAT (I1). The 

op-amp employs a folded-cascode topology, which achieves more than 80-dB dc-gain over 

process and temperature variations and its offset is mitigated by chopping. In this circuit, the 

capacitor of node A is charged once by the input current (I1) to this node and discharged once by 

the output current (I2) from this node. VA at different temperatures can be up to Vdd-2Von during 

the charging time of the capacitor and during discharge time, the VA can reach up to 0.9 (VBE max 

+Von).VBE max occurs at a temperature of -55. That is, the range of Schmitt trigger input voltage 

changes will be (0.9-1.5) when Vdd=1.8V.  
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Figure 2. Temperature sensor circuit. 

 

 

Figure 3. VA variation range . 

 

 

Figure 4. Voltage dependency of accuracy before adding an integrator . 
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2.2. Reduce Supply Voltage 

According to the explanation in the previous paragraph if the Schmitt trigger hysteresis is chosen 

between 0.9 and 1.5 and the supply voltage (Vdd) is less than the desired value during the 

manufacturing process due to mismatch effects, the current mirror’s transistors enter the triode 

region which causes a decrease in the output resistance of the current sources and this effect 

decreases the current generated of current sources and affects the operation of the sensor and 

reduces the measurement accuracy. To evaluate the impact of device mismatch in fabricated 

integrated circuits, statistical simulation methods can be employed during the design phase. One 

widely used approach is the Monte Carlo simulation, which introduces random variations to the 

electrical parameters of circuit elements, such as threshold voltage, mobility, or resistor values, 

based on process variation models. This technique enables designers to statistically analyze circuit 

performance under realistic manufacturing conditions, allowing for a better understanding of 

yield, robustness, and functional reliability prior to fabrication. By simulating a large number of 

random instances, the Monte Carlo method helps identify worst-case scenarios and performance 

distributions, thereby guiding design optimization for improved tolerance to mismatch and 

process. In this case, Monte Carlo simulations show that the supply voltage generated for the 

temperature sensor block can be reduced to 1.67 V due to mismatch, while we expect this voltage 

to be 1.8 V. Error simulations for the sensor without an integrator show that changing the supply 

voltage from 1.8 to 1.67 V has a large impact on the sensor accuracy (Figure 4). However, 

simulations show that this voltage dependence is greatly reduced after adding the integrator block 

(Figure 8). 

By adding the integrator in this node, VA always will be constant and equal to the reference 

voltage of the integrator, and the voltage changes of this point will be transferred to the Schmitt 

trigger input by the integrator. 

In order to use this temperature sensor in low voltage applications such as applications that a 

battery can be used as a power supply, it has been tried to reduce the sensor power supply from 

1.8V to 1.5V. 

2.3. Increase Accuracy and Resolution 

During the initial design of the sensor architecture, prior to reducing the supply voltage from 1.8 V 

to 1.5 V, several accuracy-enhancement techniques were implemented. Specifically, dynamic 

element matching (DEM) was applied to minimize mismatch effects in current mirrors, while 

chopping was employed to suppress input offset in the amplifier  [7], thereby ensuring higher 

measurement precision.  

After decreasing the supply voltage to 1.5V, according to the points stated in section II, the 

Schmitt trigger’s hysteresis can be only 0.3 V, and from what we know, small hysteresis in the 

Schmitt trigger can affect the noise immunity of the temperature sensor. To reduce the noise 

contribution of the Schmitt trigger, the hysteresis(ΔV=VLH-VHL) will be increased [8]. 

If 

𝑉𝑖𝑛(𝑡) = 𝑉𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) + 𝑁(𝑡) (3) 
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𝑉𝑠𝑖𝑔𝑛𝑎𝑙(𝑡): main signal 

𝑁(𝑡): Noise added to the signal 

And: 

-ℇ< 𝑁(𝑡)<ℇ (4) 

The condition that the noise does not affect the switching of the Schmitt trigger is: 

ℇ<ΔV (5) 
 

So, with a larger ΔV, the noise contribution of the Schmitt trigger will be less. In this case, the 

headroom of the current mirrors is greatly reduced, so it is necessary that the voltage of node A 

does not exceed the virtual limit. Therefore, by adding an integrator, we fix the voltage of node A 

to a constant value.  

In this situation, this goal can be achieved by using a wide- range Schmitt trigger because the input 

of the integrator is fixed, but its output can change within the swing of the integrator output. 

 

 

Figure 6. Integrator circuit . 

 

Figure 5. Temperature sensor circuit with integrator . 



 M. Dehban Rahimabad and A. Heidari / Computational Sciences and Engineering 5(1) (2025) 15-24   21 

 

 

According to Figure 7, A two-stage Op-amp is selected as an integrator and the output swing of 

this integrator will be (Von7 < out < Vdd-Von8).in this sensor Vdd is considered 1.5V. So, the Schmitt 

trigger’s input variation range will be between (0.2-1.3) and switching voltages VLH and VHL can 

be selected as Eq. (6) and Eq. (7): 

𝑉𝐿𝐻 = 𝑉𝑑𝑑 − 𝑉𝑜𝑛     (6) 

 

𝑉𝐻𝐿 =   Von (7) 

 

In designing the amplifier as an integrator used in this structure, it is important that the output 

stage of the amplifier has the capability to source and sink the current necessary to charge and 

discharge the capacitor (C). 

 

 

Figure 7. Schmitt triggers input variation range after adding the integrator . 

 

 

Figure 8. Voltage dependency of accuracy after adding an integrator . 
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3. Result 

The proposed temperature sensor was fabricated using a standard 0.18-μm CMOS process and 

occupies an active die area of 0.64 mm². A die photograph of the complete system, including the 

integrated temperature sensor, low-dropout regulator (LDO), and reference generator, is shown in 

Figure 9(a). 

To evaluate the accuracy and performance of the sensor, 16 fabricated samples were characterized 

across a wide temperature range. Measurements were conducted in a temperature-controlled oven, 

as illustrated in Figure 9(b), covering temperatures from −55 °C to +130 °C. The resulting 

temperature inaccuracy across all measured dies is plotted in Figure 10. 

After applying a one-point calibration, the sensor achieves a maximum inaccuracy of ±0.11 °C 

(3σ) over the full temperature range, as depicted in Figure 11. 

 

 

(a) 

 

 
                                    

(b) 

Figure 9. (a) Photograph of smart temperature sensor. (b) sensors in PCB 

 

 

Figure 10. Measured inaccuracy . 
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Figure 11. Measured inaccuracy after 1-point calibration . 

4. Discussion  

These results confirm that the sensor delivers excellent thermal linearity and robustness, 

demonstrating its suitability for high-precision temperature monitoring in energy-constrained and 

noise-prone environments. 

Table1 presents a comparative analysis between the proposed temperature sensor and prior works 

reported in [7], [9], and [10]. 

 

 

 

Table1. Performance summary and comparison with BJT-based temperature sensors 

Reference This work ]7 [ ]9 [ ]10 [ 

Technology(µm) 0.18 0.7 0.18 0.18 

sensor type BJT BJT BJT BJT 

ADC DC1 DC DC DC 

Temperature 

Range (◦C) 
-55 ̶ 130 -45 ̶ 130 -40 ̶ 125 -50 ̶ 180 

Area (mm2) 0.64 2.21 0.35 0.42 

Inaccuracy(◦C) 0.11 0.3 0.13 0.45 

Supply (V) 1.5-2 2.7-5.5 1.6-2.2 1.5-2 

Power (µW) 45 198 9 3.8 

Resolution (mk) 5 3 1.67 17.6 

Resolution FOM (pJ. k2) 1.4 3.2 5.4 9.7 

conversation time (ms) 1.3 1.8 218 8.3 

                                                                    1.Duty Cycle 

                                                                2.Resolution FOM = power. Conversion time. (Resolution)2 
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5. Conclusion  

A low-voltage CMOS temperature sensor with a duty-cycle-modulated (DCM) output has been 

presented, featuring a high energy efficiency and precise thermal performance. The sensor 

achieves a figure-of-merit (FOM) resolution of approximately 1.4 pJ/°C², enabled by incorporating 

an input-stage integrator and using the Schmitt trigger with larger hysteresis. These architectural 

improvements contribute to enhanced  resolution without significantly increasing power 

consumption or area. The sensor operates reliably with a 1.5 V supply and exhibits a measured 

inaccuracy of ±0.11 °C (3σ) over a wide temperature range from −55 °C to 130 °C. Fabricated in a 

standard 0.18-μm CMOS process, the design occupies an active silicon area of 0.64 mm². The 

total power consumption is approximately 45 μW, making the sensor well-suited for deployment 

in low-power applications such as wearable electronics, wireless sensor nodes, and energy-

harvesting systems. 
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