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to generate a proportional to absolute temperature voltage (Verat) and
a complementary to absolute temperature voltage (Vcrat), Which are
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Duty-cycle then modulated to a duty-cycle output. Adding an integrator before the

BJT Schmitt trigger has increased the range of input changes of the Schmitt

IF_QOW I\/O_ltage trigger. As a result, the hysteresis of the Schmitt trigger can be
esolution

increased and it has better noise immunity. Implemented in a standard
0.18-um CMOS process, the sensor has an active area of about
0.64mm? and can work with 1.5V from -55°C to 130°C with an
inaccuracy of £0.11°C (3c). Power consumption is about 45uW.

1. Introduction

The precise monitoring of temperature over an extended range is a fundamental requirement in
numerous modern electronic systems, particularly in fields such as environmental sensing,
biomedical devices, and industrial automation. Achieving high accuracy in temperature
measurement is vital to ensure system reliability, efficiency, and safety. However, alongside
accuracy, energy efficiency has become a key design constraint due to the widespread use of
battery-powered systems and energy-harvesting technologies, which often impose stringent power
budgets [1], [2].

To meet these performance and energy demands, smart temperature sensors based on
complementary metal-oxide-semiconductor (CMOS) technology have attracted significant
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attention. These sensors typically integrate a temperature-sensitive core with a signal readout
mechanism within a compact footprint. CMOS technology enables the co-integration of sensing
elements with on-chip signal processing circuitry, which is crucial for applications requiring
scalability and cost-effectiveness.

A variety of devices within standard CMOS processes can function as temperature-sensing
elements. Common examples include bipolar junction transistors (BJTs), metal-oxide-
semiconductor field-effect transistors (MOSFETS), and resistive components [3]. Among these,
BJT-based temperature sensors are particularly well-regarded for their capability to deliver high
accuracy and stability across a wide temperature spectrum [4], [5]. The analog signals generated
by these sensing elements must be converted into digital form for further processing and
communication. This can be achieved using several types of converters, such as analog-to-digital
converters (ADCs) [6], time-to-digital converters (TDCs) [7], and frequency-to-digital converters
(FDCs) [8], each offering trade-offs in terms of resolution, area, and power consumption.

In addition to traditional digitization techniques, encoding temperature information into a duty-
cycle-modulated (DCM) signal has become an appealing approach, particularly in industrial
applications. This method provides a simple yet robust interface that seamlessly integrates with
both digital systems, such as microcontrollers and embedded processors, and analog control
systems like thermostats [7]. The DCM format also lends itself to efficient transmission over noisy
channels, contributing to its practicality in real-world scenarios.

As smart systems continue to evolve and operate in increasingly complex and noisy environments,
the need for temperature sensors with enhanced noise immunity has become more critical than
ever. Designing sensors that maintain high performance under such conditions is essential to
ensure the reliability and accuracy of temperature-dependent systems in a wide range of operating
conditions.

In this brief, we present a BJT-based CMQOS temperature sensor that includes a BJT front-end
designed for improved accuracy and performance which can generate the proportional to absolute
temperature (PTAT) voltage Verat and the complementary to absolute temperature (CTAT)
voltage Vcrat, these temperature-dependent voltages are then proceeded by a voltage-to-duty-
cycle converter that can work with low voltage, this means that we reduce the supply voltage from
1.8V to 1.5V. In this sensor, an integrator is added to use a Schmitt trigger with larger hysteresis
to have better noise immunity and design the sensor with a power supply of 1.5V. The proposed
sensor has an inaccuracy of about +0.11 (from -55°C to 130 °C) and FOM resolution of about
1.4pJ. »C? while maintaining a chip area of 0.64mm? and power consumption is about 45uW.In a
standard 0.18-um CMOS process.

2. Methods
2.1. Basic Design

In Figure 1, Under the control of a Schmitt trigger, a capacitor C is periodically charged by a
current Iy up to a threshold voltage V> and then discharged by a current 1> down to a threshold
voltage V1 (Figure 1 (a)).
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Figure 1. (a) basic circuit diagram; (b) V¢ node voltage versus time and output voltage of Schmitt trigger versus time.

As can be deduced from the timing diagram shown in Figure 1 (b), the duty-cycle of the resulting
output signal equals (Eqg. (1) and Eq. (2)) [7]:
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= 2
Duty Cycle ) (2)

In Figure 2 the base-emitter voltage of Qz (Vcrat)produces Current in Rcrat (12), which decreases
by increasing the temperature. The difference between the base-emitter voltages of Q: and
Q2(AV=Vge1-Vae2), Which increases with temperature (Vperat), produces current in Rprat (I1). The
op-amp employs a folded-cascode topology, which achieves more than 80-dB dc-gain over
process and temperature variations and its offset is mitigated by chopping. In this circuit, the
capacitor of node A is charged once by the input current (I1) to this node and discharged once by
the output current (I2) from this node. VA at different temperatures can be up to Vda-2Von during
the charging time of the capacitor and during discharge time, the Va can reach up to 0.9 (VBE max
+Von).VBe max occurs at a temperature of -55. That is, the range of Schmitt trigger input voltage
changes will be (0.9-1.5) when V¢q=1.8V.
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Figure 2. Temperature sensor circuit.
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Figure 4. Voltage dependency of accuracy before adding an integrator.
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2.2. Reduce Supply Voltage

According to the explanation in the previous paragraph if the Schmitt trigger hysteresis is chosen
between 0.9 and 1.5 and the supply voltage (Vad) is less than the desired value during the
manufacturing process due to mismatch effects, the current mirror’s transistors enter the triode
region which causes a decrease in the output resistance of the current sources and this effect
decreases the current generated of current sources and affects the operation of the sensor and
reduces the measurement accuracy. To evaluate the impact of device mismatch in fabricated
integrated circuits, statistical simulation methods can be employed during the design phase. One
widely used approach is the Monte Carlo simulation, which introduces random variations to the
electrical parameters of circuit elements, such as threshold voltage, mobility, or resistor values,
based on process variation models. This technique enables designers to statistically analyze circuit
performance under realistic manufacturing conditions, allowing for a better understanding of
yield, robustness, and functional reliability prior to fabrication. By simulating a large number of
random instances, the Monte Carlo method helps identify worst-case scenarios and performance
distributions, thereby guiding design optimization for improved tolerance to mismatch and
process. In this case, Monte Carlo simulations show that the supply voltage generated for the
temperature sensor block can be reduced to 1.67 V due to mismatch, while we expect this voltage
to be 1.8 V. Error simulations for the sensor without an integrator show that changing the supply
voltage from 1.8 to 1.67 V has a large impact on the sensor accuracy (Figure 4). However,
simulations show that this voltage dependence is greatly reduced after adding the integrator block
(Figure 8).

By adding the integrator in this node, Va always will be constant and equal to the reference
voltage of the integrator, and the voltage changes of this point will be transferred to the Schmitt
trigger input by the integrator.

In order to use this temperature sensor in low voltage applications such as applications that a
battery can be used as a power supply, it has been tried to reduce the sensor power supply from
1.8V to 1.5V.

2.3. Increase Accuracy and Resolution

During the initial design of the sensor architecture, prior to reducing the supply voltage from 1.8 V
to 1.5V, several accuracy-enhancement techniques were implemented. Specifically, dynamic
element matching (DEM) was applied to minimize mismatch effects in current mirrors, while
chopping was employed to suppress input offset in the amplifier [7], thereby ensuring higher
measurement precision.

After decreasing the supply voltage to 1.5V, according to the points stated in section II, the
Schmitt trigger’s hysteresis can be only 0.3 V, and from what we know, small hysteresis in the
Schmitt trigger can affect the noise immunity of the temperature sensor. To reduce the noise
contribution of the Schmitt trigger, the hysteresis(AV=Vx-VHL) will be increased [8].

If

Vin(t) = Vsignal(t) + N(t) 3)
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Vsignal(t): main signal

N (t): Noise added to the signal

And:

SE<SN(t)<E 4)
The condition that the noise does not affect the switching of the Schmitt trigger is:

£<av ()
So, with a larger AV, the noise contribution of the Schmitt trigger will be less. In this case, the
headroom of the current mirrors is greatly reduced, so it is necessary that the voltage of node A

does not exceed the virtual limit. Therefore, by adding an integrator, we fix the voltage of node A
to a constant value.

In this situation, this goal can be achieved by using a wide- range Schmitt trigger because the input
of the integrator is fixed, but its output can change within the swing of the integrator output.
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Figure 6. Integrator circuit.
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According to Figure 7, A two-stage Op-amp is selected as an integrator and the output swing of
this integrator will be (Von7 < out < V4d-Vons).in this sensor Vqq is considered 1.5V. So, the Schmitt
trigger’s input variation range will be between (0.2-1.3) and switching voltages Vi1 and VhL can
be selected as Eg. (6) and Eq. (7):

VLH =Vdd —Von (6)

VHL = Von @)

In designing the amplifier as an integrator used in this structure, it is important that the output
stage of the amplifier has the capability to source and sink the current necessary to charge and
discharge the capacitor (C).
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Figure 7. Schmitt triggers input variation range after adding the integrator.
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Figure 8. Voltage dependency of accuracy after adding an integrator.
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3. Result

The proposed temperature sensor was fabricated using a standard 0.18-um CMOS process and
occupies an active die area of 0.64 mm2. A die photograph of the complete system, including the
integrated temperature sensor, low-dropout regulator (LDO), and reference generator, is shown in
Figure 9(a).

To evaluate the accuracy and performance of the sensor, 16 fabricated samples were characterized
across a wide temperature range. Measurements were conducted in a temperature-controlled oven,
as illustrated in Figure 9(b), covering temperatures from —55°C to +130°C. The resulting
temperature inaccuracy across all measured dies is plotted in Figure 10.

After applying a one-point calibration, the sensor achieves a maximum inaccuracy of +0.11 °C
(30) over the full temperature range, as depicted in Figure 11.
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Figure 10. Measured inaccuracy.
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Figure 11. Measured inaccuracy after 1-point calibration.
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These results confirm that the sensor delivers excellent thermal linearity and robustness,
demonstrating its suitability for high-precision temperature monitoring in energy-constrained and
noise-prone environments.

Tablel presents a comparative analysis between the proposed temperature sensor and prior works
reported in [7], [9], and [10].

Tablel. Performance summary and comparison with BJT-based temperature sensors

Reference This work [7] [9] [10]
Technology(pm) 0.18 0.7 0.18 0.18
sensor type BJT BJT BJT BJT
ADC DC! DC DC DC
Tﬁ::l"g’ee”("fg)e -55-130 | -45-130 | -40-125 | -50-180
Area (mmz2) 0.64 2.21 0.35 0.42
Inaccuracy(°C) 0.11 0.3 0.13 0.45
Supply (V) 1.5-2 2.7-55 | 1.6-22 1.5-2
Power (W) 45 198 9 3.8
Resolution (mk) 5 3 1.67 17.6
Resolution FOM (pJ. k?) 1.4 3.2 5.4 9.7
conversation time (ms) 1.3 1.8 218 8.3

1.Duty Cycle

2.Resolution FOM = power. Conversion time. (Resolution)2
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5. Conclusion

A low-voltage CMOS temperature sensor with a duty-cycle-modulated (DCM) output has been
presented, featuring a high energy efficiency and precise thermal performance. The sensor
achieves a figure-of-merit (FOM) resolution of approximately 1.4 pJ/°C2, enabled by incorporating
an input-stage integrator and using the Schmitt trigger with larger hysteresis. These architectural
improvements contribute to enhanced resolution without significantly increasing power
consumption or area. The sensor operates reliably with a 1.5V supply and exhibits a measured
inaccuracy of £0.11 °C (30) over a wide temperature range from —55 °C to 130 °C. Fabricated in a
standard 0.18-um CMOS process, the design occupies an active silicon area of 0.64 mm?2. The
total power consumption is approximately 45 uW, making the sensor well-suited for deployment
in low-power applications such as wearable electronics, wireless sensor nodes, and energy-
harvesting systems.
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