[1] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science, 500(1-3), 218-241.
[2] De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: present and future commercial applications. science, 339(6119), 535-539.
[3] Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102.
[4] Guo, P., Chen, X., Gao, X., Song, H., & Shen, H. (2007). Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites science and Technology, 67(15-16), 3331-3337.
[5] Ahmadi, M., Ansari, R., & Rouhi, H. (2020). Studying buckling of composite rods made of hybrid carbon fiber/carbon nanotube-reinforced polyimide using multi-scale FEM. Scientia Iranica, 27(1), 252-261.
[6] Zhu, B. K., Xie, S. H., Xu, Z. K., & Xu, Y. Y. (2006). Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Science and Technology, 66(3-4), 548-554.
[7] So, H. H., Cho, J. W., & Sahoo, N. G. (2007). Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. European Polymer Journal, 43(9), 3750-3756.
[8] Qian, D., Dickey, E. C., Andrews, R., & Rantell, T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied physics letters, 76(20), 2868-2870.
[9] Jia, Y., Peng, K., Gong, X. L., & Zhang, Z. (2011). Creep and recovery of polypropylene/carbon nanotube composites. International Journal of Plasticity, 27(8), 1239-1251.
[10] Rong, C., Ma, G., Zhang, S., Song, L., Chen, Z., Wang, G., & Ajayan, P. M. (2010). Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly (ether ether ketone). Composites Science and Technology, 70(2), 380-386.
[11] Kundalwal, S. I., & Ray, M. C. (2014). Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Composites Part B: Engineering, 57, 199-209.
[12] Mahmoodi, M. J., Maleki, M., & Hassanzadeh-Aghdam, M. K. (2018). Static bending and free vibration analysis of hybrid fuzzy-fiber reinforced nanocomposite Beam-A multiscale modeling. International Journal of Applied Mechanics, 10(05), 1850053.
[13] Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A., & Mohajeri, A. (2010). Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials & Design, 31(9), 4202-4208.
[14] Aragh, B. S., Barati, A. N., & Hedayati, H. (2012). Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Composites Part B: Engineering, 43(4), 1943-1954.
[15] Pakseresht, M., Ansari, R., & Hassanzadeh-Aghdam, M. K. (2020). Analyzing the effects of interphase on the effective damping properties of aligned carbon nanotube-reinforced epoxy nanocomposites using a micromechanical approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(7), 910-923.
[16] Hassanzadeh-Aghdam, M. K., Ansari, R., & Mahmoodi, M. J. (2019). Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes. Mechanics of Materials, 129, 80-98.
[17] Haghgoo, M., Ansari, R., & Hassanzadeh-Aghdam, M. K. (2018). Effective elastoplastic properties of carbon nanotube-reinforced aluminum nanocomposites considering the residual stresses. Journal of Alloys and Compounds, 752, 476-488.
[18] Civalek, O., & Jalaei, M. H. (2020). Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerospace Science and Technology, 99, 105753.
[19] Mohamed, N., Mohamed, S. A., & Eltaher, M. A. (2020). Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Engineering with Computers, 1-14.
[20] Wang, J. F., Cao, S. H., & Zhang, W. (2021). Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. European Journal of Mechanics-A/Solids, 85, 104105.
[21] Yas, M. H., & Samadi, N. (2012). Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping, 98, 119-128.
[22] Rafiee, M., Yang, J., & Kitipornchai, S. (2013). Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Computers & Mathematics with Applications, 66(7), 1147-1160.
[23] Wattanasakulpong, N., & Ungbhakorn, V. (2013). Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science, 71, 201-208.
[24] Shi, D. L., Feng, X. Q., Huang, Y. Y., Hwang, K. C., & Gao, H. (2004). The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol., 126(3), 250-257.
[25] Tsai, J. L., Tzeng, S. H., & Chiu, Y. T. (2010). Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Composites Part B: Engineering, 41(1), 106-115.
[26] Parashkevova, L., & Bontcheva, N. (2013). Micropolar-based modeling of size effects on stiffness and yield stress of nanoparticles-modified polymer composites. Computational materials science, 67, 303-315.
[27] Yanase, K., Moriyama, S., & Ju, J. W. (2013). Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mechanica, 224(7), 1351-1364.
[28] Shen, L., & Li, J. (2004). Transversely isotropic elastic properties of single-walled carbon nanotubes. Physical Review B, 69(4), 045414.
[29] Yang, Q. S., He, X. Q., Liu, X., Leng, F. F., & Mai, Y. W. (2012). The effective properties and local aggregation effect of CNT/SMP composites. Composites Part B: Engineering, 43(1), 33-38.