Document Type : Original Article

Authors

1 Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran

2 Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Iran

Abstract

In this paper, the buckling response of single-walled carbon nanotube (SWCNT)-reinforced shape memory polymer nanocomposite beams is investigated through a computational multiscale approach. First, the Mori-Tanaka micromechanical model is used to extract the effective mechanical properties of SWCNT-polymer nanocomposites. The role of interfacial region between the nanotubes and polymer matrix in the elastic properties is taken into account in the analysis. Then, the buckling behavior of the nanocomposite beams is evaluated by the finite element method (FEM). The effects of nanotube content, interphase and temperature on the buckling response are investigated. It is observed that the addition of SWCNT into the polymeric materials increases the buckling capacity of the resulting nanocomposite beams. According to the results, the buckling characteristics of shape memory polymer nanocomposite beams are affected by the CNT/polymer interphase. The increase of temperature significantly decreases the buckling loads of nanocomposite beams due to the decrease of nanocomposite elastic modulus.

Keywords

[1] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science, 500(1-3), 218-241.
[2] De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: present and future commercial applications. science, 339(6119), 535-539.
[3] Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102.
[4] Guo, P., Chen, X., Gao, X., Song, H., & Shen, H. (2007). Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites science and Technology, 67(15-16), 3331-3337.
[5] Ahmadi, M., Ansari, R., & Rouhi, H. (2020). Studying buckling of composite rods made of hybrid carbon fiber/carbon nanotube-reinforced polyimide using multi-scale FEM. Scientia Iranica, 27(1), 252-261.
[6] Zhu, B. K., Xie, S. H., Xu, Z. K., & Xu, Y. Y. (2006). Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Science and Technology, 66(3-4), 548-554.
[7] So, H. H., Cho, J. W., & Sahoo, N. G. (2007). Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. European Polymer Journal, 43(9), 3750-3756.
[8] Qian, D., Dickey, E. C., Andrews, R., & Rantell, T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied physics letters, 76(20), 2868-2870.
[9] Jia, Y., Peng, K., Gong, X. L., & Zhang, Z. (2011). Creep and recovery of polypropylene/carbon nanotube composites. International Journal of Plasticity, 27(8), 1239-1251.
[10] Rong, C., Ma, G., Zhang, S., Song, L., Chen, Z., Wang, G., & Ajayan, P. M. (2010). Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly (ether ether ketone). Composites Science and Technology, 70(2), 380-386.
[11] Kundalwal, S. I., & Ray, M. C. (2014). Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Composites Part B: Engineering, 57, 199-209.
[12] Mahmoodi, M. J., Maleki, M., & Hassanzadeh-Aghdam, M. K. (2018). Static bending and free vibration analysis of hybrid fuzzy-fiber reinforced nanocomposite Beam-A multiscale modeling. International Journal of Applied Mechanics, 10(05), 1850053.
[13] Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A., & Mohajeri, A. (2010). Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials & Design, 31(9), 4202-4208.
[14] Aragh, B. S., Barati, A. N., & Hedayati, H. (2012). Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Composites Part B: Engineering, 43(4), 1943-1954.
[15] Pakseresht, M., Ansari, R., & Hassanzadeh-Aghdam, M. K. (2020). Analyzing the effects of interphase on the effective damping properties of aligned carbon nanotube-reinforced epoxy nanocomposites using a micromechanical approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(7), 910-923.
[16] Hassanzadeh-Aghdam, M. K., Ansari, R., & Mahmoodi, M. J. (2019). Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes. Mechanics of Materials, 129, 80-98.
[17] Haghgoo, M., Ansari, R., & Hassanzadeh-Aghdam, M. K. (2018). Effective elastoplastic properties of carbon nanotube-reinforced aluminum nanocomposites considering the residual stresses. Journal of Alloys and Compounds, 752, 476-488.
[18] Civalek, O., & Jalaei, M. H. (2020). Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerospace Science and Technology, 99, 105753.
[19] Mohamed, N., Mohamed, S. A., & Eltaher, M. A. (2020). Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Engineering with Computers, 1-14.
[20] Wang, J. F., Cao, S. H., & Zhang, W. (2021). Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. European Journal of Mechanics-A/Solids, 85, 104105.
[21] Yas, M. H., & Samadi, N. (2012). Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping, 98, 119-128.
[22] Rafiee, M., Yang, J., & Kitipornchai, S. (2013). Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Computers & Mathematics with Applications, 66(7), 1147-1160.
[23] Wattanasakulpong, N., & Ungbhakorn, V. (2013). Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science, 71, 201-208.
[24] Shi, D. L., Feng, X. Q., Huang, Y. Y., Hwang, K. C., & Gao, H. (2004). The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol., 126(3), 250-257.
[25] Tsai, J. L., Tzeng, S. H., & Chiu, Y. T. (2010). Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Composites Part B: Engineering, 41(1), 106-115.
[26] Parashkevova, L., & Bontcheva, N. (2013). Micropolar-based modeling of size effects on stiffness and yield stress of nanoparticles-modified polymer composites. Computational materials science, 67, 303-315.
[27] Yanase, K., Moriyama, S., & Ju, J. W. (2013). Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mechanica, 224(7), 1351-1364.
[28] Shen, L., & Li, J. (2004). Transversely isotropic elastic properties of single-walled carbon nanotubes. Physical Review B, 69(4), 045414.
[29] Yang, Q. S., He, X. Q., Liu, X., Leng, F. F., & Mai, Y. W. (2012). The effective properties and local aggregation effect of CNT/SMP composites. Composites Part B: Engineering, 43(1), 33-38.