[1] Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., Forman, D. (2011). Global cancer statistics, CA. Cancer J. Clin., 61(2), 69–90.
[2] Kozegar, E. (2012). Implementing an efficient algorithm for mass detection in mammograms, MSc thesis, Iran University of Science and Technology.
[3] Siegel, R. L., Miller, K. D., Jemal, A. (2016). “Cancer statistics, 2016,” CA. Cancer J. Clin., 66(1), 7–30.
[4] Fayyaz, H., Soryani, M., Ehsan, K. (2018). Mass Segmentation in Automated 3D Breast Ultrasound using Deep Learning, Iran. J. Biomed. Eng., 12(2), 137–146.
[5] Kozegar, E., Soryani, M., Behnam, H., Salamati, M., Tan, T. (2020). Computer aided detection in automated 3-D breast ultrasound images: a survey, Artif. Intell. Rev., 53 (3), 1919-1941.
[6] Tan, T., Gubern-Merida, A., Borelli, C., Manniesing, R., Zelst, J., Wang, L., Zhang, W., Platel, B., Mann, R. M., Karssemeijer, N. (2016). Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model, Med. Phys., 43(7), 4074–4084.
[7] Kozegar, E. (2018). Development of Edge-based deformable Model for Mass Segmentation in 3-D Automated Breast Ultrasound Images, Ph.D. thesis School of Computer Engineering, Iran University of Science and Technology.
[8] Cheng, H.D., Shan, J., Ju, W., Guo, Y., Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey, Pattern Recognit., 43( 1), 299–317.
[9] Kozegar, E., Soryani, M., Behnam, H., Salamati, M., Tan, T. (2018). Mass Segmentation in Automated 3-D Breast Ultrasound Using Adaptive Region Growing and Supervised Edge-Based Deformable Model, IEEE Trans. Med. Imaging, 37(4), 918–928.
[10] Kuo, H.C., Giger, M. L., Reiser, I., Drukker, K., Edwards, A., Sennett, C. A. (2013). Automatic 3D lesion segmentation on breast ultrasound images, Proceedings of the SPIE, 867025.
[11] Li, C., Xu, C., Gui, C., Fox, M. D. (2005).Level Set Evolution without Re-Initialization: A New Variational Formulation, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1, 430–436.
[12] Wang, J., Engelmann, R., Li, Q. (2007). Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique, Med. Phys., 34(12), 4678–4689.
[13] Kozegar, E., Soryani, M., Behnam, H., Salamati, M., Tan, T. (2017). Determining Mass Boundary in 3D Automated Breast Ultrasound Images Using a Deformable Model, Iranian Quarterly Journal of Breast Disease, 10(2), 16-26.
[14] Ciresan, D., Giusti, A., Gambardella, L., Schmidhuber, J. (2012). Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images, Advanced in neural information processing systems, 2, 2843-2851.
[15] Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation, 234-241.
[16] Çiçek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger. O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. 424-432.