[1] Khalil,R.,Al Horani,M.,Yousef,A. &Sababheh,M.(2014).A new definition of fractional derivative,Journal of Computational and Applied Mathematics, 264, 65-70.

[2] Herrmann,R. (2011).Fractional calculus: An Introduction for Physicists,World Scientific PublishingCompany,Singapore.

[3] Kilbas,A. A.,Srivastava,H. M., &Trujillo,J. J. (2006).Theory and Applications of FractionalDifferential Equations.North-Holland Mathematics Studies, Elsevier, Amsterdam, Vol. 207.

[4] Podlubny,I. (1999).Fractional Differential Equations,Mathematics in Science and Engineering,Academic Press, San Diego, Vol. 198.

[5] Capelas de Oliveira,E., &Tenreiro Machado,J. A. (2014).A review of definitions for fractionalderivatives and integral,Mathematical Problems in Engineering, 2014, (238459).

[6] Katugampola,U. N., (2016).New fractional integral unifying six existing fractional integrals,arxiv.org/abs/1612.08596.

[7] Figueiredo Camargo,R., &Capelas de Oliveira,E. (2015).Fractional Calculus (In Portuguese),EditoraLivraria da Fsica, So Paulo.

[8] Kilbas,A. A.,Srivastava,H. M., &Trujillo,J. J. (2006).Theory and Applications of the FractionalDifferential Equations,Elsevier, Amsterdam,Vol. 204.

[9] Katugampola,U. N. (2014).A new fractional derivative with classical properties,arXiv:1410.6535v2.

[10] R. Goreno,R.,Kilbas,A. A.,Mainardi,F., &Rogosin,S. V.(2014).Mittag-Leffler Functions,RelatedTopics and Applications, Springer, Berlin.

[11] Vanterler da C. Sousa,J., &E. Capelas de Oliveira,E. (2017).M-fractional derivative with classicalproperties,arXiv:1704.08187.

[12] Vanterler da C. Sousa,J., &Capelas de Oliveira,E. (2018).A New Truncated M-Fractional DerivativeType Unifying Some Fractional Derivative Types with Classical Properties,International Journal ofAnalysis and Applications, 16 (1), 83-96.

[13] Simmons,F. G. (1974).Differential Equations Whit Applications and Historical Notes,McGraw-Hill,Inc. New York.

[14] Ilie,M.,Biazar,J., &Ayati,Z. (2018).General solution of second order fractionaldifferential equations,International Journal of Applied Mathematical Research, 7 (2),56-61.

[15] Ilie,M.,Biazar,J., &Ayati,Z. (2019).Optimal Homotopy Asymptotic Method for first-orderconformable fractional differential equations,Journal of FractionalCalculus and Applications, 10 (1),33-45.

[16] Ilie,M.,Biazar,J., &Ayati,Z. (2019).Analytical solutions for second-order fractional differentialequations via OHAM,Journal of Fractional Calculus and Applications, 10 (1),105-119.

[17] Ilie,M.,Biazar,J., &Ayati,Z. (2018).The first integral method for solving some conformable fractionaldifferential equations,Optical and Quantum Electronics, 50 (2), https://doi.org/10.1007/s11082-017-1307-x.

[18] Ilie,M.,Biazar,J., &Ayati,Z. (2018).Resonant solitons to the nonlinear Schrödinger equation withdifferent forms of nonlinearities,Optik,164,201-209.

[19] Ilie,M.,Biazar,J., &Ayati,Z. (2018).Analytical study of exact traveling wave solutions for time-fractional nonlinear Schrödinger equations,Optical andQuantum Electronics, 50 (12),https://doi.org/10.1007/s11082-018-1682-y.

[20] Ilie,M.,Biazar,J., &Ayati,Z. (2017).General solution of Bernoulli and Riccati fractional differentialequations based on conformable fractional derivative,International Journalof Applied MathematicalResearch, 6(2),49-51.

[21] Ilie,M.,Biazar,J., &Ayati,Z. (2017).Application of the Lie Symmetry Analysis for second-orderfractional differential equations,Iranian Journal of Optimization, 9(2),79-83.

[22] Ilie,M., &Khoshkenar,A. (2021).General solution of the Bernoulli and Riccati fractional differentialEquations via truncated M-fractional derivative, International Journal of Computer Mathematics,submitted 01May 2021.

[23] Ilie,M.,Biazar,J., &Ayati,Z. (2018).Analytical solutions for conformable fractional Bratu-typeequations,International Journal of Applied Mathematical Research, 7 (1),15-19.

[24] Ilie,M.,Biazar,J., &Ayati,Z. (2020).Neumann method for solving conformable fractional Volterraintegral equations,Computational Methods for Differential Equations, 8(1),54-68.

[25] Ilie,M.,Biazar,J., &Ayati,Z. (2019).Mellin transform and conformable fractional operator:applications,SeMA Journal,76(2), 203-215,doi.org/10.1007/s40324-018-0171-3.

[26] Ilie,M.,Biazar,J., &Ayati,Z. (2018).Optimal homotopy asymptotic method for conformable fractionalVolterra integral equations of the second kind,49thAnnual Iranian Mathematics Conference, August 23-26, ISC 97180-51902.

[27] Ilie, M.,Navidi,M., &Khoshkenar,A. (2018).Analytical solutions for conformable fractional Volterraintegral equations of the second kind,49thAnnual Iranian Mathematics Conference, August 23-26, ISC 97180-51902.

[28] Salahshour,S.,Ahmadian,A.,Abbasbandy,S., &Baleanu,D. (2018).M-fractionalderivative underinterval uncertainty: Theory, properties and applications,Chaos, Solitons and Fractals, 117,84-93.

[29] Hosseini,K.,Mirzazadeh, M.,Ilie,M., &Gómez-Aguilar,JF. (2020).Biswas–Arshed equation withthe beta time derivative: optical solitons and other solutions,Optik, 217,164801.

[30] Hosseini,K.,Ilie,M.,Mirzazadeh,M., &Baleanu,D. (2021).An analytic study on the approximatesolution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law,Mathematical Methods in the Applied Sciences,https://doi.org/10.1002/mma.7059.

[31] Hosseini,K.,Ilie, M.,Mirzazadeh,M., &Baleanu,D. (2020).A detailed study on a new (2+ 1)-dimensional mKdV equation involving the Caputo–Fabrizio time-fractional derivative,Advances inDifference Equations, 331,https://doi.org/10.1186/s13662-020-02789-5.

[32] Hosseini,K.,Ilie, M.,Mirzazadeh,M.,Yusuf,A.,Sulaiman,T. A.,Baleanu,D., &Salahshour,S.

(2021).An effective computational method to deal with a time-fractional nonlinear water wave equationin the Caputo sense,Mathematics and Computers in Simulation, 187,248-260.

[33] Al Horani,M., &Khalil,R.Total fractional differentials with applications to exact fractional differentialequations, International Journal of Computer Mathematics, DOI: 10.1080/00207160.2018.1438602.

[34] Saffarian,M., &Mohebbi,A.A novel ADI Galerkin spectral element method for the solution of two-dimensional time fractional subdiffusion equation,International Journal of Computer Mathematics,https://doi.org/10.1080/00207160.2020.1792450.

[35] Baleanu,D.,Jleli,M.,Kumar,S., &Samet,B. (2020).A fractional derivative with two singularkernelsand application to a heat conduction problem.Advances in Difference Equations,252,https://doi.org/10.1186/s13662-020-02684-z.

[36] Ilie,M.,Biazar,J., &Ayati,Z. (2018).Lie Symmetry Analysis for the solution of first-order linear andnonlinear fractional differential equations,International Journal of Applied Mathematical Research, 7

(2),37-41.

[37] Arrigo,D. J. (2015).Symmetry analysis of differential equations an introduction.1nd Edition,JohnWiley & Sons, Inc.

[38] Hyden,P. E. (2000).Symmetry Methods for Differential Equations (A Beginner’s Guide).CambridgeTexts in Applied Mathematics.

[39] Olver,P. J. (1993).Applications of Lie groups to differential equations.2ndEdition, Springer-Verlag.