[1] Friston, K., "The free energy principle: A unified brain theory?," Nature Reviews Neuroscience, vol. 11, no. 2, pp. 127-138, 2010.
[2] Friston, K., "A Free Energy Principle for Biological Systems," MDP, Entropy, vol. 14(11), pp. 2100-2121, 2012.
[3] Friston, K. J., Stephan, K. E., "Free-energy and the brain," Synthese, vol. 17, pp. 417-458, 2007.
[4] Friston, K., "A free energy principle for a particular physics," arXiv: 1906.10184, 2019.
[5] Szilard, L., "On the reduction of entropy in a thermodynamic system by the inference of an intelligent," Z Physics, vol. 53, pp. 840-858, 1929.
[6] Kirkadly, J. S., "Thermodynamics of human brain," Biophysics, vol. 5, pp. 981-986, 1965.
[7] Shannon, C. E., "A Mathematical Theory of Communication," Bell System Technical Journal, vol. 27, pp. 379-423 & 623-656, 1948.
[8] Sengupta, B.; Stemller, M. B.; Friston, K., "Information and Efficiency in the Nervous Systems," PLos Comutational Biology, 2013.
[9] Shen, Y.; Archambeau, C.; Cornford, D.; Opper, M.; Shawe-Taylor, J.; Barillec, R., "A comparision of variational and Markov chain monte carlo methods for inference in partially observed stochastic dynamic systems," Journal of Signal Processing Systems, vol. 61, no. 1, pp. 51-59, 2010.
[10] Todorov, E., "Linearly-solvable Markov decision problems," in In Advances in Neural Information Processing Systems, MIT Press, 2006, pp. 1369-1376.
[11] Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbech, P; O'Doherty, J.; Pezzulo, G., "Active inference and learning," Elsevier, Neuroscience and Behavioral Review, vol. 68, pp. 862-879, 2016.
[12] Friston, K. J.; Kilner, J.; Harison, L., "A free energy principle for the brain," Physiol. Paris, Vols. 100(1-3), pp. 70-78, 2006.
[13] Parr, T.; Friston, K. J., "Uncertainty, epistemic and active inference," Journal of Royal Society Interface, vol. 14, no. 136, 2017.
[14] Greshman, S. J., "What does the free energy principle tell us about the brain?," arXiv: 1901.07945v5 [q-bio.NC], 2019.
[15] Knill, D., C.; Pouget, A., "The Bayesian brain: the role of uncertainty in neural coding and computation," Trends Neuroscience, pp. 301-308, 2004.
[16] Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., Friston, K., "Active inference on discrete state-spaces: A synthesis," Journal of Mathematical Psychology, vol. 99, 2020.
[17] Mackay, D. J. C., "Free energy minmization algorithm for decoding and crypto analysis," Elrctron. Lett., vol. 31, pp. 445-447, 1995.
[18] Sajid, N., Ball, P. J., Parr, T., Friston, K. J., "arXiv," 30 October 2020. [Online]. Available: arXiv: 1909.10863v3 [cs.AI]30 Oct 2020.
[19] Kaplan, R., Friston, K. J., "Planning and navigation as active inference," Biological Cybernetic, vol. 112, pp. 323-343, 2018.
[20] Ostwald, D.; Kirilina, E.; Strake, L.; Blankengurg, F., "A tutorial on variational Bayes for latent linear stochastic time-series models," Elsevier, Journal of Mathematical Psychology, vol. 60, pp. 1-19, 2014.
[21] Smith, R., Friston, K. J., Whyte, C., "A Step-by-Step Tutorial on Active Inference and its Application to Empirical Data," 2021. [Online]. Available: http://researchgate.net/publication/348153427.
[22] Friston, K.; Adams, R. A.; Perrit, L.; Breakspear, M., "Perception as hypotheses: saccades as experiments," Front. Psychology, vol. 3, p. 151, 2012.
[23] Bogacz, R., "A tutorial on free energy framework for modelling perception and learning," Elsevier, Journal of Mathematical Psychology, vol. 76, pp. 198-211, 2017.
[24] Friston, K. J., Parr, T., de Veris, B., "The graphical brain: Blief propagation and active inference," Network Neuroscience, vol. 1(4), pp. 381-414, 2017.
[25] Sajid, N.; Ball, P. J.; Friston, K., "Active inference: demystified and compred," arXiv: 1909.10863v2 [cs.AI] 29 Jan 2020, 2020.
[26] Catal, O.; Nauta, J.; Verbelen, T.; Simoens, P.; Dhoeht, B., "Bayesian policy selection using active inference," in The proceedings of the workshop on"Struture & Priors in Reinforcement Learning", New Orleans, 2019.
[27] Estes, W. K., "On the organization and core concepts of learning theory and cognitive psychology," in Handbook of learning and cognitive process, Hillsdale, NJ, Erlbaum, 1978.
[28] Parr, T.; Friston, K., "The Anatomy of Inference: Generative Models and Brain Structure," Frontiers in Computational Neuroscience, vol. 12, no. 90, 2018.
[29] Friston, K., "The free-energy principle: a rough guid to the brain?," Opinion, Trends in Cognitive Science, vol. 13, no. 7, 2009.
[30] Smith, R.; Schwartenbeck, P.; Parr, T.; Friston, K., "An Active Inference Approach to modelling structure learning: concept learning as an example case," Frontier in Computational Neuroscience, vol. 14, no. 41, May, 2020.
[31] Catal, O., Wuthier, S., De Boom, C., Verbelen, T., Dhoedt, B., "Learning Generative State Space Models for Active Inference," Frontiers in Computational Neuroscience, vol. 14, 2020.
[32] Weisberg, R. W., "Problem solving and creativity," The nature of creativity, pp. 148-176, 1988.
[33] Weisberg, R. W., "Creativity and knowledge: A challenge to theories," in Handbook of creativity, New York, Cambridge University Press, 1999, pp. 226-250.
[34] Parr, T., Rikhye, R. V., Halassa, M. M., Friston, K. J., "Prefrontal Computation as Active Inference," Cerebral Cortex, vol. 00, no. 00, pp. 1-14, 2019.
[35] Kaplan, R., Friston, K. J., "Planning and navigation az active inference," Biological Cybernetic, vol. 112, pp. 323-343, 2018.