[1] Radnić, J., Markić, R., Glibić, M., Ćubela, D., & Grgić, N. (2016). Experimental testing of concrete beams with different levels of prestressing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(3), 760-779.
[2] Moosaei, H. R., Zareei, A. R., Salemi, N. (2022). Elevated Temperature Performance of Concrete Reinforced with Steel, Glass, and Polypropylene Fibers and Fire-proofed with Coating, International Journal of Engineering, 35(05), 917-930.
[3] Jefferson, A. D. (2002). Local plastic surfaces for cracking and crushing in concrete. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 216(4), 257-266.
[4] Jefferson, A. D. (2002). Local plastic surfaces for cracking and crushing in concrete. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 216(4), 257-266.
[5] Sivaraja, M., Velmani, N., & Pillai, M. S. (2010). Study on durability of natural fibre concrete composites using mechanical strength and microstructural properties. Bulletin of Materials Science, 33(6), 719-729.
[6] Akcay, B. (2012). Experimental investigation on uniaxial tensile strength of hybrid fibre concrete. Composites Part B: Engineering, 43(2), 766-778.
[7] Schneider, K., Michel, A., Liebscher, M., Terreri, L., Hempel, S., & Mechtcherine, V. (2019). Mineral-impregnated carbon fibre reinforcement for high temperature resistance of thin-walled concrete structures. Cement and Concrete Composites, 97, 68-77.
[8] Pradhan, S. C. (2012). Buckling analysis and small scale effect of biaxially compressed graphene sheets using non-local elasticity theory. Sadhana, 37(4), 461-480.
[9] Lee, J. H., & Lee, B. G. (2017). Experimental and mechanical analysis of cement–nanotube nanocomposites. Bulletin of Materials Science, 40(4), 819-829.
[10] Wang, Z., Yu, J., Li, G., Zhang, M., & Leung, C. K. (2019). Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack. Cement and Concrete Composites, 100, 120-129.
[11] Chu, H. Y., Jiang, J. Y., Sun, W., & Zhang, M. (2017). Effects of graphene sulfonate nanosheets on mechanical and thermal properties of sacrificial concrete during high temperature exposure. Cement and Concrete Composites, 82, 252-264.
[12] Liu, J., Li, Q., & Xu, S. (2019). Reinforcing Mechanism of Graphene and Graphene Oxide Sheets on Cement-Based Materials. Journal of Materials in Civil Engineering, 31(4), 04019014.
[13] Ahmad, H., Fan, M., & Hui, D. (2018). Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 145, 270-280.
[14] Luo, H., Dong, J., Xu, X., Wang, J., Yang, Z., & Wan, Y. (2018). Exploring excellent dispersion of graphene nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels. Composites Part A: Applied Science and Manufacturing, 109, 290-297.
[15] Ji, X. Y., Cao, Y. P., & Feng, X. Q. (2010). Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modelling and Simulation in Materials Science and Engineering, 18(4), 045005.
[16] de Mendonça, J. P. A., Silva, J. P. C., & Sato, F. (2019). High-Frequency Oscillator Based on Nano Graphene. Brazilian Journal of Physics, 49(4), 488-493.
[17] Wu, Y. Y., Que, L., Cui, Z., & Lambert, P. (2019). Physical properties of concrete containing graphene oxide nanosheets. Materials, 12(10), 1707.
[18] Lu, L., & Ouyang, D. (2017). Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials, 7(7), 187.
[19] Dimov, D., Amit, I., Gorrie, O., Barnes, M. D., Townsend, N. J., Neves, A. I., ... & Craciun, M. F. (2018). Ultrahigh performance nanoengineered graphene–concrete composites for multifunctional applications. Advanced Functional Materials, 28(23), 1705183.
[20] Shamsaei, E., de Souza, F. B., Yao, X., Benhelal, E., Akbari, A., & Duan, W. (2018). Graphene-based nanosheets for stronger and more durable concrete: A review. Construction and Building Materials, 183, 642-660.
[21] Hlobil, M., Šmilauer, V., & Chanvillard, G. (2016). Micromechanical multiscale fracture model for compressive strength of blended cement pastes. Cement and Concrete Research, 83, 188-202.
[22] Hernández, M. G., Anaya, J. J., Ullate, L. G., & Ibañez, A. (2006). Formulation of a new micromechanic model of three phases for ultrasonic characterization of cement-based materials. Cement and Concrete Research, 36(4), 609-616.
[23] Tatar, J., Taylor, C. R., & Hamilton, H. R. (2019). A multiscale micromechanical model of adhesive interphase between cement paste and epoxy supported by nanomechanical evidence. Composites Part B: Engineering, 172, 679-689.
[24] García-Macías, E., D'Alessandro, A., Castro-Triguero, R., Pérez-Mira, D., & Ubertini, F. (2017). Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Composites Part B: Engineering, 108, 451-469.
[25] Jang, S. H., Hochstein, D. P., Kawashima, S., & Yin, H. (2017). Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture. Cement and Concrete Composites, 77, 49-59.
[26] Hassanzadeh-Aghdam, M. K., Ansari, R., Mahmoodi, M. J., Darvizeh, A., & Hajati-Modaraei, A. (2018). A comprehensive study on thermal conductivities of wavy carbon nanotube-reinforced cementitious nanocomposites. Cement and Concrete Composites, 90, 108-118.
[27] Wang, J. F., Zhang, L. W., & Liew, K. M. (2017). Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites. Computer Methods in Applied Mechanics and Engineering, 319, 393-413.
[28] Hassanzadeh-Aghdam, M. K., Mahmoodi, M. J., & Safi, M. (2019). Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete. Composites Part B: Engineering, 106972.
[29] Hasanzadeh, M., Ansari, R., & Hassanzadeh-Aghdam, M. K. (2019). Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mechanics of Materials, 129, 63-79.
[30] Safi, M., Hassanzadeh-Aghdam, M. K., & Mahmoodi, M. J. (2019). Effects of nano-sized ceramic particles on the coefficients of thermal expansion of short SiC fiber-aluminum hybrid composites. Journal of Alloys and Compounds, 803, 554-564.
[31] Atif, R., & Inam, F. (2016). Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein journal of nanotechnology, 7(1), 1174-1196.
[32] Li, Z., Chu, J., Yang, C., Hao, S., Bissett, M. A., Kinloch, I. A., & Young, R. J. (2018). Effect of functional groups on the agglomeration of graphene in nanocomposites. Composites Science and Technology, 163, 116-122.
[33] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574.
[34] Dastgerdi, J. N., Marquis, G., & Salimi, M. (2013). The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Composites Science and Technology, 86, 164-169.
[35] Sideris, K. K., Manita, P., & Sideris, K. (2004). Estimation of ultimate modulus of elasticity and Poisson ratio of normal concrete. Cement and Concrete Composites, 26(6), 623-631.