[1] Rani, S., & Kumar, P. (2017). A sentiment analysis system to improve teaching and learning. Computer, 50(5), 36-43.
[2] Altrabsheh, N., Gaber, M. M., & Cocea, M. (2013). SA-E: sentiment analysis for education. Frontiers in Artificial Intelligence and Applications, 255, 353-362.
[3] Pong-Inwong, C., & Songpan, W. (2019). Sentiment analysis in teaching evaluations using sentiment phrase pattern matching (SPPM) based on association mining. International journal of machine learning and cybernetics, 10, 2177-2186.
[4] Aung, K. Z., & Myo, N. N. (2017, May). Sentiment analysis of students' comment using lexicon based approach. In 2017 IEEE/ACIS 16th international conference on computer and information science (ICIS) (pp. 149-154). IEEE.
[5] Watkins, J., Fabielli, M., & Mahmud, M. (2020, July). Sense: a student performance quantifier using sentiment analysis. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE.
[6] Dolianiti, F. S., Iakovakis, D., Dias, S. B., Hadjileontiadou, S., Diniz, J. A., & Hadjileontiadis, L. (2019). Sentiment analysis techniques and applications in education: A survey. In Technology and Innovation in Learning, Teaching and Education: First International Conference, TECH-EDU 2018, Thessaloniki, Greece, June 20–22, 2018, Revised Selected Papers 1 (pp. 412-427). Springer International Publishing.
[7] Chauhan, G. S., Agrawal, P., & Meena, Y. K. (2019). Aspect-based sentiment analysis of students’ feedback to improve teaching–learning process. In Information and Communication Technology for Intelligent Systems: Proceedings of ICTIS 2018, Volume 2 (pp. 259-266). Springer Singapore.
[8] Mite-Baidal, K., Delgado-Vera, C., Solís-Avilés, E., Espinoza, A. H., Ortiz-Zambrano, J., & Varela-Tapia, E. (2018, October). Sentiment analysis in education domain: A systematic literature review. In Technologies and Innovation: 4th International Conference, CITI 2018, Guayaquil, Ecuador, November 6-9, 2018, Proceedings (pp. 285-297). Cham: Springer International Publishing.
[9] Collomb, A., Costea, C., Joyeux, D., Hasan, O., & Brunie, L. (2014). A study and comparison of sentiment analysis methods for reputation evaluation. Rapport de recherche RR-LIRIS-2014-002.
[10] Onan, A. (2021). Sentiment analysis on massive open online course evaluations: a text mining and deep learning approach. Computer Applications in Engineering Education, 29(3), 572-589.
[11] Barron-Estrada, M. L., Zatarain-Cabada, R., & Bustillos, R. O. (2019). Emotion Recognition for Education using Sentiment Analysis. Res. Comput. Sci., 148(5), 71-80.
[12] Hasib, K. M., Rahman, F., Hasnat, R., & Alam, M. G. R. (2022, January). A machine learning and explainable ai approach for predicting secondary school student performance. In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0399-0405). IEEE.
[13] Kandhro, I. A., Wasi, S., Kumar, K., Rind, M., & Ameen, M. (2019). Sentiment analysis of students’ comment using long-short term model. Indian Journal of Science and Technology, 12(8), 1-16.
[14] Yu, L. C., Lee, C. W., Pan, H. I., Chou, C. Y., Chao, P. Y., Chen, Z. H., ... & Lai, K. R. (2018). Improving early prediction of academic failure using sentiment analysis on self‐evaluated comments. Journal of Computer Assisted Learning, 34(4), 358-365.
[15] Vital, T. P., Sangeeta, K., & Kumar, K. K. (2021). Student classification based on cognitive abilities and predicting learning performances using machine learning models. International Journal of Computing and Digital Systems, 10(1), 63-75.
[16] Yousafzai, B. K., Khan, S. A., Rahman, T., Khan, I., Ullah, I., Ur Rehman, A., ... & Cheikhrouhou, O. (2021). Student-performulator: student academic performance using hybrid deep neural network. Sustainability, 13(17), 9775.
[17] Saravanan, T., Nagadeepa, N., & Mukunthan, B. (2022). The Effective Learning Approach to ICT-TPACK and Prediction of the Academic Performance of Students Based on Machine Learning Techniques. In Communication and Intelligent Systems: Proceedings of ICCIS 2021 (pp. 79-93). Singapore: Springer Nature Singapore.
[18] Kaur, W., Balakrishnan, V., & Singh, B. (2020, April). Improving teaching and learning experience in engineering education using sentiment analysis techniques. In IOP Conference Series: Materials Science and Engineering (Vol. 834, No. 1, p. 012026). IOP Publishing.
[19] Al Shibli, K. S., Al Abri, A. S. S., Sunny, L., Ishwar, N., & Cherian, S. P. (2022). Model for Prediction of Student Grades using Data Mining Algorithms. European Journal of Information Technologies and Computer Science, 2(2), 1-6.
[20] Ouatik, F., Erritali, M., Ouatik, F., & Jourhmane, M. (2022). Predicting Student Success Using Big Data and Machine Learning Algorithms. International Journal of Emerging Technologies in Learning (Online), 17(12), 236.
[21] Misuraca, M., Forciniti, A., Scepi, G., & Spano, M. (2020). Sentiment Analysis for Education with R: packages, methods and practical applications. arXiv preprint arXiv:2005.12840.
[22] Relucio, F. S., & Palaoag, T. D. (2018, January). Sentiment analysis on educational posts from social media. In Proceedings of the 9th international conference on E-education, E-business, E-management and E-learning (pp. 99-102).
[23] Nikolić, N., Grljević, O., & Kovačević, A. (2020). Aspect-based sentiment analysis of reviews in the domain of higher education. The Electronic Library, 38(1), 44-64.
[24] Shrotriya, S., & Kumari, N. (2018). Smart Education System Developed by Sentiment Analysis of Students Using PMM Neural Networks. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 6.
[25] Kandhro, I. A., Chhajro, M. A., Kumar, K., Lashari, H. N., & Khan, U. (2019). Student feedback sentiment analysis model using various machine learning schemes: a review. Indian Journal of Science and Technology, 12(14), 1-9.
[26] Multani, A., & Agrawal, A. (2019). Sentiment Analysis for Understanding Students’ Learning Experiences: A Survey Paper. International Journal of Scientific Research & Engineering Trends, 5(2).
[27] Jang, Y., Choi, S., Jung, H., & Kim, H. (2022). Practical early prediction of students’ performance using machine learning and eXplainable AI. Education and Information Technologies, 1-35.
[28] Rakhmanov, O. (2020). A comparative study on vectorization and classification techniques in sentiment analysis to classify student-lecturer comments. Procedia Computer Science, 178, 194-204.
[29] Gaftandzhieva, S., Talukder, A., Gohain, N., Hussain, S., Theodorou, P., Salal, Y. K., & Doneva, R. (2022). Exploring online activities to predict the final grade of student. Mathematics, 10(20), 3758.
[30] Sultana, J., Sultana, N., Yadav, K., & Alfayez, F. (2018, April). Prediction of sentiment analysis on educational data based on deep learning approach. In 2018 21st Saudi computer society national computer conference (NCC) (pp. 1-5). IEEE.
[31] Berrar, D. (2018). Bayes’ theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 403, 412.
[32] Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman, H. S., & Prasath, V. S. (2019). Effects of distance measure choice on k-nearest neighbor classifier performance: a review. Big data, 7(4), 221-248.
[33] Jantakun, K., Jantakun, T., & Jantakoon, T. (2022). The Architecture of System for Predicting Student Performance Based on Data Science Approaches (SPPS-DSA Architecture). Int. J. Inf. Educ. Technol, 12(8), 778-785.
[34] Cambria, E., Das, D., Bandyopadhyay, S., & Feraco, A. (Eds.). (2017). A practical guide to sentiment analysis.
[35] Sadineni, P. K. (2020, October). Detection of fraudulent transactions in credit card using machine learning algorithms. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 659-660). IEEE.
[36] Sadineni, P. K. (2020, October). Detection of fraudulent transactions in credit card using machine learning algorithms. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 659-660). IEEE.
[37] Lalata, J. A. P., Gerardo, B., & Medina, R. (2019, June). A sentiment analysis model for faculty comment evaluation using ensemble machine learning algorithms. In Proceedings of the 2019 International Conference on Big Data Engineering (pp. 68-73).
[38] Tripathy, A. (2017). Sentiment analysis using machine learning techniques (Doctoral dissertation).
[39] Yousaf, A., Umer, M., Sadiq, S., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2020). Emotion recognition by textual tweets classification using voting classifier (LR-SGD). IEEE Access, 9, 6286-6295.
[40] Ghosh, M., & Sanyal, G. (2018). Performance assessment of multiple classifiers based on ensemble feature selection scheme for sentiment analysis. Applied Computational Intelligence and Soft Computing.