[1] Bakhshali, MA. & Shamsi, M. (2012). Facial skin segmentation using bacterial foraging optimization algorithm. Journal of medical signals and sensors, 2(4), 203.
[2] Hossain, MF, Shamsi, M., Alsharif, MR., Zoroofi, RA., & Yamashita, K. (2012). Automatic facial skin detection using Gaussian mixture model under varying illumination. Int J Innovative Comput Inf Control, 8(2), 1135-1144.
[3] Wu, Y, & Ji, Q. (2019). Facial landmark detection: A literature survey. International Journal of Computer Vision, 127(2), 115-142.
[4] Naji, SA, Zainuddin, R., & Jalab, HA. (2012). Skin segmentation based on multi pixel color clustering models. Digital Signal Processing, 22(6), 933-940.
[5] Al-Mohair, HK, Saleh, JM., & Suandi, SA. (2015). Hybrid human skin detection using neural network and K-means clustering technique. Applied Soft Computing, 33, 337-347.
[6] Shamsi, M, Zoroofi, RA., Lucas, C., Hasanabadi, MS., & Alsharif, MR. (2008). Automatic facial skin segmentation based on em algorithm under varying illumination. IEICE TRANSACTIONS on Information and Systems, 91(5), 1543-1551.
[7] Alaee, E, Shamsi, M., Ahmadi, H., Nazem, S., & Sedaaghi, M. (2014). Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries. International Journal of Computer and Information Engineering, 8(6), 973-977.
[8] Pujol, FA, Pujol, M., Jimeno-Morenilla, A., & Pujol, MJ. (2017). Face detection based on skin color segmentation using fuzzy entropy. Entropy, 19(1), 26.
[9] Lu, Z, Jiang, X., & Kot, A. (2018). Color space construction by optimizing luminance and chrominance components for face recognition. Pattern Recognition, 83, 456-468.
[10] Cuevas, E, Zaldivar, D., Perez, M., & Sanchez, EN. (2009). LVQ neural networks applied to face segmentation. Intelligent Automation & Soft Computing, 15(3), 439-450.
[11] Xu, M, Guo, C., Hu, Y., Lu, H., Li, X., Li, F., & Zhang, W. (2017). Automatic Facial Complexion Classification Based on Mixture Model. In Pacific Rim Conference on Multimedia, 327-336.
[12] Paracchini, M, Marcon, M., Villa, F., & Tubaro, S. (2020). Deep skin detection on low resolution grayscale images. Pattern Recognition Letters, 131, 322-328.
[13] Salah, K. B., Othmani, M., & Kherallah, M. (2021). A novel approach for human skin detection using convolutional neural network. The Visual Computer, 1-11.
[14] Sahnoune, A., Dahmani, D., & Aouat, S. (2020). A Rule Based Human Skin Detection Method in CMYK Color Space. In International Symposium on Modelling and Implementation of Complex Systems, 233-247.
[15] Verma, H, Verma, D., & Tiwari, PK. (2020). A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image. Expert Systems with Applications, 114121.
[16] Ali, AR, Couceiro, M., Anter, A., & Hassanien, AE. (2016). Particle swarm optimization based fast fuzzy C-means clustering for liver CT segmentation. In Applications of intelligent optimization in biology and medicine, 233-250.
[17] Fred AL, Kumar SN, Padmanaban, P., Gulyas, B., & Kumar, HA. (2020). Fuzzy-crow search optimization for medical image segmentation. In Applications of Hybrid Metaheuristic Algorithms for Image Processing, 413-439.
[18] Tongbram, S, Shimray, BA., Singh, LS., & Dhanachandra, N. (2021). A novel image segmentation approach using fcm and whale optimization algorithm. Journal of Ambient Intelligence and Humanized Computing, 1-15.
[19] Zhang, M, Jiang, W., Zhou, X., Xue, Y., & Chen, S. (2019). A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation. Soft computing, 23(6): 2033-2046.
[20] Bose, A, & Mali, K. (2016). Fuzzy-based artificial bee colony optimization for gray image segmentation. Signal, Image and Video Processing, 10(6): 1089-1096.
[21] Das, S, & De, S. (2017). A modified genetic algorithm based FCM clustering algorithm for magnetic resonance image segmentation. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, 435-443.
[22] Li, MQ, Xu, LP., Xu, N., Huang, T., & Yan, B. (2018). SAR image segmentation based on improved grey wolf optimization algorithm and fuzzy c-means. Mathematical Problems in Engineering.
[23] Heidari, AA, Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.
[24] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
[25] Bakhshali, M, Shamsi, M., & Sadeghi, M. (2015). Evaluation of facial soft tissue parameters for Northwestern students in Iran. Journal of Craniomaxillofacial Research, 78-82.
[26] Ford, A, & Roberts, A. (1998). Colour space conversions. Westminster University, London, 1-31.
[27] Khrissi, L, El Akkad, N., Satori, H., & Satori, K. (2021). Clustering method and sine cosine algorithm for image segmentation. Evolutionary Intelligence, 1-14.
[28] Csurka, G, Larlus, D., Perronnin, F., Meylan, F. (2013). What is a good evaluation measure for semantic segmentation? In BMVC, 27, 10-5244.