[1]. B. A. C. Cree, J. R. Oksenberg, and S. L. Hauser, “Multiple sclerosis: two decades of progress,” Lancet Neurol, vol. 21, no. 3, pp. 211–214, 2022.
[2]. F. D. Lublin et al, “How patients with multiple sclerosis acquire disability,” Brain, vol. 145, no. 9, pp. 3147–3161, 2022.
[3]. R. Rahmanzadeh et al, “A new advanced MRI biomarker for remyelinated lesions in multiple sclerosis,” Ann. Neurol, vol. 92, no. 3, pp. 486–502, 2022.
[4]. A. Pal and Y. Rathi, “A review and experimental evaluation of deep learning methods for MRI reconstruction,” J. Mach. Learn. Biomed. imaging, vol. 1, 2022.
[5]. G. Goh et al, “Multimodal neurons in artificial neural networks,” Distill, vol. 6, no. 3, p. e30, 2021.
[6]. B. Souid, S. Yahia, T. Bouchrika, and O. Jemai, “Fusion of CNN and feature extraction methods for multiple sclerosis classification,” in Fifteenth International Conference on Machine Vision (ICMV 2022), SPIE, 2023, pp. 353–360.
[7]. L. Coll et al, “Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI,” J. Magn. Reson. Imaging, 2023.
[8]. G. Giovannoni, C. Hawkes, J. Lechner-Scott, M. Levy, E. Waubant, and J. Gold, “The COVID-19 pandemic and the use of MS disease-modifying therapies,” Mult. Scler. Relat. Disord, vol. 39, 2020.
[9]. R. Magliozzi and A. H. Cross, “Can CSF biomarkers predict future MS disease activity and severity?,” Mult. Scler. J, vol. 26, no. 5, pp. 582–590, 2020.
[10]. M. P. Sormani et al, “Disease‐modifying therapies and coronavirus disease 2019 severity in multiple sclerosis,” Ann. Neurol, vol. 89, no. 4, pp. 780–789, 2021.
[11]. R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, and D. Di Nardo, “An update of the possible applications of magnetic resonance imaging (MRI) in dentistry: a literature review,” J. imaging, vol. 7, no. 5, p. 75, 2021.
[12]. A. Tiwari, S. Srivastava, and M. Pant, “Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019,” Pattern Recognit. Lett, vol. 131, pp. 244–260, 2020.
[13]. N. Weiskopf, L. J. Edwards, G. Helms, S. Mohammadi, and E. Kirilina, “Quantitative magnetic resonance imaging of brain anatomy and in vivo histology,” Nat. Rev. Phys, vol. 3, no. 8, pp. 570–588, 2021.
[14]. C. Z. Cooley et al, “A portable scanner for magnetic resonance imaging of the brain,” Nat. Biomed. Eng, vol. 5, no. 3, pp. 229–239, 2021.
[15]. G. R. Yang and X.-J. Wang, “Artificial neural networks for neuroscientists: a primer,” Neuron, vol. 107, no. 6, pp. 1048–1070, 2020.
[16]. N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, and A. Bamhdi, “Deep Neuro-Fuzzy System application trends, challenges, and future perspectives: a systematic survey,” Artif. Intell. Rev, vol. 56, no. 2, pp. 865–913, 2023, doi: 10.1007/s10462-022-10188-3.
[17]. X. Liu, S. Tian, F. Tao, and W. Yu, “A review of artificial neural networks in the constitutive modeling of composite materials,” Compos. Part B Eng, vol. 224, p. 109152, 2021.
[18]. F.-L. Fan, J. Xiong, M. Li, and G. Wang, “On interpretability of artificial neural networks: A survey,” IEEE Trans. Radiat. Plasma Med. Sci, vol. 5, no. 6, pp. 741–760, 2021.
[19]. S. Chung and L. F. Abbott, “Neural population geometry: An approach for understanding biological and artificial neural networks,” Curr. Opin. Neurobiol, vol. 70, pp. 137–144, 2021.
[20]. J. L. Semmlow and B. Griffel, Biosignal and medical image processing. CRC press, 2021.
[21]. X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based medical image segmentation methods,” Sustainability, vol. 13, no. 3, p. 1224, 2021.
[22]. Y. Li, J. Zhao, Z. Lv, and J. Li, “Medical image fusion method by deep learning,” Int. J. Cogn. Comput. Eng, vol. 2, pp. 21–29, 2021.
[23]. S. Farabi Maleki et al, “Artificial Intelligence for multiple sclerosis management using retinal images: pearl, peaks, and pitfalls,” in Seminars in Ophthalmology, Taylor & Francis, 2023, pp. 1–18.
[24]. N. Haj Messaoud et al, “Automated segmentation of multiple sclerosis lesions based on convolutional neural networks,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis, vol. 11, no. 4, pp. 1359–1377, 2023.
[25]. M. Ortiz et al, “Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence,” Mult. Scler. Relat. Disord, vol. 74, p. 104725, 2023.
[26]. F. Nabizadeh, E. Ramezannezhad, A. Kargar, A. M. Sharafi, and A. Ghaderi, “Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis,” Neurol. Sci, vol. 44, no. 2, pp. 499–517, 2023.
[27]. J. M. Seok et al, “Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using a deep learning model,” Sci. Rep, vol. 13, no. 1, p. 11625, 2023.
[28]. M. Filippi et al, “Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective,” J. Neurol, vol. 270, no. 3, pp. 1286–1299, 2023.
[29]. A. Montolío, J. Cegoñino, E. Garcia‐Martin, and A. Pérez del Palomar, “The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach,” Acta Ophthalmol, 2023.
[30]. A. Kaur, L. Kaur, and A. Singh, “DeepCONN: patch-wise deep convolutional neural networks for the segmentation of multiple sclerosis brain lesions,” Multimed. Tools Appl, vol. 83, no. 8, pp. 24401–24433, 2024.