[1] Bhatter, S., Mathur, A., Kumar, D., & Singh, J. (2020). A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory. Physica A: Statistical Mechanics and its Applications, 537, 122578.
[2] Singh, Y., Gill, V., Singh, J., Kumar, D., & Khan, I. (2021). Computable generalization of fractional kinetic equation with special functions. Journal of King Saud University-Science, 33(1), 101221.
[3] Singh, J., Ahmadian, A., Rathore, S., Kumar, D., Baleanu, D., Salimi, M., & Salahshour, S. (2021). An efficient computational approach for local fractional Poisson equation in fractal media. Numerical Methods for Partial Differential Equations, 37(2), 1439-1448.
[4] Goswami, A., Singh, J., & Kumar, D. (2020). Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occurring in multi-component plasmas. AIMS Mathematics, 5(3), 2346-2369.
[5] Djilali, S., & Ghanbari, B. (2021). Dynamical behavior of two predators–one prey model with generalized functional response and time-fractional derivative. Advances in difference Equations, 2021(1), 235.
[6] Darvishi, M. T., Najafi, M., & Najafi, M. (2012). Traveling wave solutions for the (3+ 1)-dimensional breaking soliton equation by (G’/G)-expansion method and modified F-expansion method. International Journal of Computational and Mathematical Sciences, 6(2), 64-69.
[7] Guner, O., Atik, H., & Kayyrzhanovich, A. A. (2017). New exact solution for space-time fractional differential equations via (G′/G)-expansion method. Optik, 130, 696-701.
[8] Guner, O., & Bekir, A. (2017). The Exp-function method for solving nonlinear space–time fractional differential equations in mathematical physics. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 277-282.
[9] Zheng, B. (2013). Exp‐function method for solving fractional partial differential equations. The Scientific World Journal, 2013(1), 465723.
[10] Guner, O. (2017). Exp-function method and fractional complex transform for space-time fractional KP-BBM equation. Communications in Theoretical Physics, 68(2), 149.
[11] Bekir, A., Guner, O., & Cevikel, A. (2016). The exp-function method for some time-fractional differential equations. IEEE/CAA Journal of Automatica Sinica, 4(2), 315-321.
[12] He, J. H., & Abdou, M. A. (2007). New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons & Fractals, 34(5), 1421-1429.
[13] Khani, F., Hamedi-Nezhad, S., Darvishi, M. T., & Ryu, S. W. (2009). New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method. Nonlinear analysis: Real world applications, 10(3), 1904-1911.
[14] Shin, B. C., Darvishi, M. T., & Barati, A. (2009). Some exact and new solutions of the Nizhnik–Novikov–Vesselov equation using the Exp-function method. Computers & Mathematics with Applications, 58(11-12), 2147-2151.
[15] Wu, X. H. B., & He, J. H. (2008). Exp-function method and its application to nonlinear equations. Chaos, Solitons & Fractals, 38(3), 903-910.
[16] Darvishi, M. T., Najafi, M., & Najafi, M. (2011). Some new exact solutions of the (3+ 1)-dimensional breaking soliton equation by the Exp-function method. Nonlinear Sci. Lett. A, 2(4), 221-232.
[17] Ma, W. X., Huang, T., & Zhang, Y. (2010). A multiple exp-function method for nonlinear differential equations and its application. Physica scripta, 82(6), 065003.
[18] Zhang, S. (2008). Application of Exp-function method to high-dimensional nonlinear evolution equation. Chaos, Solitons & Fractals, 38(1), 270-276.
[19] Darvishi, M. T., Najafi, M., & Najafi, M. (2011). Application of multiple exp-function method to obtain multi-soliton solutions of (2+ 1)-and (3+ 1)-dimensional breaking soliton equations. Am. J. Comput. Appl. Math, 1(2), 41-47.
[20] Ma, W. X., & Zhu, Z. (2012). Solving the (3+ 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Applied Mathematics and Computation, 218(24), 11871-11879.
[21] Zayed, E. M., & Al-Nowehy, A. G. (2015). The multiple exp-function method and the linear superposition principle for solving the (2+ 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Zeitschrift für Naturforschung A, 70(9), 775-779.
[22] Adem, A. R. (2016). A (2+ 1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws. International Journal of Modern Physics B, 30(28n29), 1640001.
[23] Zayed, E. M., Amer, Y. A., & Al-Nowehy, A. G. (2016). The modified simple equation method and the multiple exp-function method for solving nonlinear fractional Sharma-Tasso-Olver equation. Acta Mathematicae Applicatae Sinica, English Series, 32, 793-812.
[24] Ma, W. X., Huang, T., & Zhang, Y. (2010). A multiple exp-function method for nonlinear differential equations and its application. Physica scripta, 82(6), 065003.
[25] Yildirim, Y., Yasar, E., & Adem, A. R. (2017). A multiple exp-function method for the three model equations of shallow water waves. Nonlinear Dynamics, 89, 2291-2297.
[26] Yıldırım, Y., & Yaşar, E. (2017). Multiple exp-function method for soliton solutions of nonlinear evolution equations. Chinese Physics B, 26(7), 070201.
[27] Liu, J. G., Zhou, L., & He, Y. (2018). Multiple soliton solutions for the new (2+ 1)-dimensional Korteweg–de Vries equation by multiple exp-function method. Applied Mathematics Letters, 80, 71-78.
[28] Bhatter, S., Mathur, A., Kumar, D., & Singh, J. (2020). A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory. Physica A: Statistical Mechanics and its Applications, 537, 122578.
[29] Saad, K. M., AL-Shareef, E. H., Alomari, A. K., Baleanu, D., & Gómez-Aguilar, J. F. (2020). On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger’s equations using homotopy analysis transform method. Chinese Journal of Physics, 63, 149-162.
[30] Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied mathematics and computation, 147(2), 499-513.
[31] Rashidi, M. M., Domairry, G., DoostHosseini, A., & Dinarvand, S. (2008). Explicit approximate solution of the coupled KdV equations by using the homotopy analysis method. International Journal of Mathematical Analysis, 2(9-12), 581-589.
[32] Gao, Y. T., & Tian, B. (2001). Ion-acoustic shocks in space and laboratory dusty plasmas: Two-dimensional and non-traveling-wave observable effects. Physics of Plasmas, 8(7), 3146-3149.
[33] Hirota, R., & Satsuma, J. (1981). Soliton solutions of a coupled Korteweg-de Vries equation. Physics Letters A, 85(8-9), 407-408.
[34] Das, G. C., & Sarma, J. (1999). Response to" Comment on'A new mathematical approach for finding the solitary waves in dusty plasma'"[Phys. Plasmas 6, 4392 (1999)]. Physics of Plasmas, 6(11), 4394.
[35] Hirota, R. (2004). The direct method in soliton theory (No. 155). Cambridge university press.
[36] Tahami, M., & Najafi, M. (2017). Multi-wave solutions for the generalized (2+ 1)-dimensional nonlinear evolution equations. Optik, 136, 228-236.
[37] Ayub, K., Khan, M. Y., & Mahmood-Ul-Hassan, Q. (2017). Solitary and periodic wave solutions of Calogero–Bogoyavlenskii–Schiff equation via exp-function methods. Computers & mathematics with applications, 74(12), 3231-3241.
[38] Wazwaz, A. M. (2008). Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh–coth method and Exp-function method. Applied Mathematics and Computation, 202(1), 275-286.
[39] Cheng, L., & Zhang, Y. (2015). Multiple wave solutions and auto-Bäcklund transformation for the (3+ 1)-dimensional generalized B-type Kadomtsev–Petviashvili equation. Computers & Mathematics with Applications, 70(5), 765-775.
[40] Yu, S. (2012). N-soliton solutions of the KP equation by Exp-function method. Applied Mathematics and Computation, 219(8), 3420-3424.
[41] Hamid, M., Usman, M., Zubair, T., Haq, R. U., & Shafee, A. (2019). An efficient analysis for N-soliton, Lump and lump–kink solutions of time-fractional (2+ 1)-Kadomtsev–Petviashvili equation. Physica A: Statistical Mechanics and its Applications, 528, 121320.
[42] Jumarie, G. (2007). Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. Journal of Applied Mathematics and Computing, 24, 31-48.
[43] Momani, S., & Odibat, Z. (2007). Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Computers & Mathematics with Applications, 54(7-8), 910-919.
[44] Ayati, Z. (2023). Exact solutions of (2+ 1)-dimentional Sakovich equation using two well known methods. Computational Sciences and Engineering, 3(1), 163-175.