Document Type : Original Article

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

2 Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran

Abstract

The central topic of the present article is the investigation of solutions of nonlinear fractional partial differential models (NFPDDEs) using the generalized-exponential-rational-function (GEERAF) Method. In this regard, the jumarie's modified-riemann-liouville (JMRL) derivative has been used to convert the proposed model into ordinary differential-difference model (ODDEM). This efficient proposed method can be used as a replacement for generating novel types of solutions to NFPDDEs in Scientific issues. According to the scientific literature, our findings have not been published before in any other sources.

Keywords

[1] Iomin, A.: Fractional evolution in quantum mechanics. Chaos, Solitons & Fractals: X 1, 100001 (2019). doi:10.1016/j.csfx.2018.100001
[2] Nasrolahpour, H.: Time fractional formalism: classical and quantum phenomena. arXiv preprint arXiv:1203.4515 (2012). doi:10.48550/arXiv.1203.4515
[3] Kumar, D., Baleanu, D.: Fractional calculus and its applications in physics. Frontiers Media SA (2019). doi:10.3389/fphy.2019.00081
[4] Faridi, W.A., Asjad, M.I., Jhangeer, A.: The fractional analysis of fusion and fssion process in plasma physics. Physica Scripta 96(10), 104008 (2021). doi:10.1088/1402-4896/ac0dfd
[5] Pandir, Y., Yildirim, A.: Analytical approach for the fractional differential equations by using the extended tanh method. Waves in Random and Complex Media 28(3), 399–410 (2018). doi:10.1080/17455030.2017.1356490
[6] Dubey, S., Chakraverty, S.: Application of modifed extended tanh method in solving fractional order coupled wave equations. Mathematics and Computers in Simulation 198, 509–520 (2022). doi:10.1016/j.matcom.2022.03.007
[7] Raslan, K., Ali, K.K., Shallal, M.A.: The modifed extended tanh method with the riccati equation for solving the space-time fractional ew and mew equations. Chaos, Solitons & Fractals 103, 404–409 (2017). doi:10.1016/j.chaos.2017.06.029
[8] Tuluce Demiray, S., Pandir, Y., Bulut, H.: Generalized kudryashov method for time-fractional differential equations. In: Abstract and Applied Analysis, vol. 2014, p. 901540 (2014). doi:10.1155/2014/901540
[9] Kumar, D., Seadawy, A.R., Joardar, A.K.: Modifed kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chinese journal of physics 56(1), 75–85 (2018). doi:10.1016/j.cjph.2017.11.020
[10] Eslami, M., Sharif, A.: Extended hyperbolic method to the perturbed nonlinear chen–lee–liu equation with conformable derivative. Partial Differential Equations in Applied Mathematics 11, 100838 (2024). doi:10.1016/j.padiff.2024.100838
[11] Mohyud-Din, S.T., Bibi, S.: Exact solutions for nonlinear fractional differential equations using GG2′ -expansion method. Alexandria Engineering Journal 57(2), 1003–1008 (2018). doi:10.1016/j.aej.2017.01.035
[12] Al-Shawba, A.A., Abdullah, F.A., Azmi, A., Akbar, M.A.: An extension of the double (GG′ , G1 )- expansion method for conformable fractional differential equations. Complexity 2020(1), 7967328 (2020). doi:10.1155/2020/7967328
[13] Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction duffng model by generalized projective riccati equation method. Optical and Quantum Electronics 50, 1–13 (2018). doi:10.1007/s11082-018-1416-1
[14] Zheng, B., Wen, C.: Exact solutions for fractional partial differential equations by a new fractional subequation method. Advances in Difference Equations 2013, 1–12 (2013). doi:10.1186/1687-1847-2013-199
[15] Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. In: Abstract and Applied Analysis, vol. 2013, p. 426462 (2013). doi:10.1155/2013/426462. Wiley Online Library
[16] Bekir, A., Güner, Ö., Ünsal, Ö.: The frst integral method for exact solutions of nonlinear fractional differential equations. Journal of Computational and Nonlinear Dynamics 10(2), 021020 (2015). doi:10.1115/1.4028065
[17] Baleanu, D., Jassim, H.K.: Exact solution of two-dimensional fractional partial differential equations. Fractal and Fractional 4(2), 21 (2020). doi:10.3390/fractalfract4020021
[18] Ghanbari, B., Inc, M.: A new generalized exponential rational function method to fnd exact special solutions for the resonance nonlinear schrödinger equation. The European Physical Journal Plus 133(4), 142 (2018). doi:10.1140/epjp/i2018-11984-1
[19] Ali, K.K., Yokus, A., Seadawy, A.R., Yilmazer, R.: The ion sound and langmuir waves dynamical system via computational modifed generalized exponential rational function. Chaos, Solitons & Fractals 161, 112381 (2022). doi:10.1016/j.chaos.2022.112381
[20] Aldhabani, M.S., Nonlaopon, K., Rezaei, S., Bayones, F.S., Elagan, S., El-Marouf, S.A.: Abundant solitary wave solutions to a perturbed schrödinger equation with kerr law nonlinearity via a novel approach. Results in Physics 35, 105385 (2022). doi:10.1016/j.rinp.2022.105385
[21] Nonlaopon, K., Günay, B., Mohamed, M.S., Elagan, S., Najati, S., Rezapour, S.: RETRACTED: On extracting new wave solutions to a modifed nonlinear Schrödinger’s equation using two integration methods. Elsevier (2022). doi:10.1016/j.rinp.2022.105589
[22] Peng, S.: Optical solutions of the generalized (2+ 1)-dimensional dynamical schrödinger equation using the generalized exponential rational function method. Journal of Applied Science and Engineering 27(1) (2023). doi:10.6180/jase.202401_27(1).0009
[23] Abbas, N., Hussain, A., Riaz, M.B., Ibrahim, T.F., Birkea, F.O., Tahir, R.A.: A discussion on the lie symmetry analysis, travelling wave solutions and conservation laws of new generalized stochastic potential-kdv equation. Results in Physics 56, 107302 (2024). doi:10.1016/j.rinp.2023.107302
[24] Dhiman, S.K., Kumar, S.: Analyzing specifc waves and various dynamics of multi-peakons in (3+ 1)- dimensional p-type equation using a newly created methodology. Nonlinear Dynamics 112(12), 10277–10290 (2024). doi:10.1007/s11071-024-09588-7
[25] Sağlam Özkan, Y.: New exact solutions of the conformable space-time two-mode foam drainage equation by two effective methods. Nonlinear Dynamics 112(21), 19353–19369 (2024). doi:10.1007/s11071-024-10010-5
[26] Ulam, S.: Collected Papers of Enrico Fermi. University of Chicago Press, US (1965)
[27] Toda, M.: Theory of Nonlinear Lattices vol. 20. Springer, (2012)
[28] Ablowitz, M.J., Ladik, J.F.: Nonlinear differential- difference equations. Journal of Mathematical Physics 16(3), 598–603 (1975). doi:10.1063/1.522558
[29] Wadati, M.: Transformation theories for nonlinear discrete systems. Progress of Theoretical Physics Supplement 59, 36–63 (1976). doi:10.1143/PTPS.59.36
[30] Kevrekidis, P., Kevrekidis, I., Malomed, B.: Stability of solitary waves in fnite ablowitz–ladik lattices. Journal of Physics A: Mathematical and General 35(2), 267 (2002). doi:10.1088/0305-4470/35/2/307
[31] Hu, X.-B., Tam, H.-W.: Application of bilinear method to integrable differential-difference equations. Glasgow Mathematical Journal 43(A), 43–51 (2001). doi:10.1017/S0017089501000052
[32] Zhang, S., Dong, L., Ba, J.-M., Sun, Y.-N.: The (GG′ )-expansion method for nonlinear differentialdifference equations. Physics Letters A 373(10), 905–910 (2009)
[33] Bekir, A., Güner, Ö., Ayhan, B.: Exact solutions of some systems of fractional differential-difference equations. Mathematical Methods in the Applied Sciences 38(17), 3807–3817 (2015). doi:10.1002/mma.3318
[34] Arikoglu, A., Ozkol, I.: Solution of differential–difference equations by using differential transform method. Applied Mathematics and Computation 181(1), 153–162 (2006). doi:10.1016/j.amc.2006.01.022
[35] Zou, L., Wang, Z., Zong, Z.: Generalized differential transform method to differential-difference equation. Physics Letters A 373(45), 4142–4151 (2009). doi:10.1016/j.physleta.2009.09.036
[36] Feng, Q.-H.: Exact solutions for fractional differential-difference equations by an extended riccati sub-ode method. Communications in Theoretical Physics 59(5), 521 (2013). doi:10.1088/0253-6102/59/5/01
[37] Wu, G.-c., Lee, E.: Fractional variational iteration method and its application. Physics Letters A 374(25), 2506–2509 (2010). doi:10.1016/j.physleta.2010.04.034
[38] Narita, K.: New discrete modifed kdv equation. Progress of theoretical physics 86(4), 817–824 (1991). doi:10.1143/ptp/86.4.817