Document Type : Original Article

Authors

1 University of Mazandaran

2 Department of Mathematics, University of Okara, Okara, Pakistan

Abstract

The nonlinear Schrödinger equation  appears in many fields like quantum mechanics, optical fiber communications, plasma physics, and superfluid dynamics. In this context, we focused on the extended - dimensional stochastic NLSE. Specifically, we will explore these equations under the influence of multiplicative noise in the Itô framework. We apply the Sardar sub-equation method to investigate the exact solutions of the extended (3+1) - dimensional stochastic nonlinear Schrodinger equation under the influence of multiplicative noise. This method simplifies this nonlinear equation and derive the soliton-like, periodic, bright, dark and singular solutions, which are crucial for understanding wave propagation and stability in various physical systems. In this framework, bifurcation analysis allows us to explore how the system transitions at critical points or parameter thresholds. Chaotic behaviors are further examined by adding the external periodic functions. We can characterize regions where chaotic motion emerges, offering insights into unpredictable and turbulent behaviors that are common in plasma physics and optical fibers. Sensitivity analysis helps quantify how variations in system parameters influence the dynamics of the equation. By linearizing the system near equilibrium solutions, the stability of critical points is also investigated. Moreover, we present the behavior of these solutions graphically. By plotting the solutions obtained from the Sardar sub-equation method, we can observe the formation of solitons.  Graphical illustrations of bifurcations, chaotic regimes and stability regions to enhance both qualitative and quantitative analysis of the system.

Keywords

[1] S. Sadiq &, A.  Javid; Novel solitary wave solutions in dual-mode simplified modified Camassa–Holm equation in shallow water waves. Opt. Quantum Electron. 56(3), (2024), 1–13.
[2] M.Bilal, J. Ren, M. Inc, & R. T. Alqahtani. Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quantum Electron. 55(7), (2023), 656.
[3] M.Bilal, J. Ren. Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quantum Electron. 54(1), (2022), 40.
[4] M.Bilal, & J. Ahmad. Dispersive solitary wave solutions for the dynamical soliton model by three versatile analytical mathematical methods. Eur. Phys. J. Plus 137(6), (2022), 674.
[5] M. Bilal, H. Wencheng, & J.  Ren. Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, (2021). 1–15.
[6] M. Z. Baber, N. Ahmed, C. Xu, M. S. Iqbal, and T. Sulaiman . A computational scheme and its comparison with optical soliton solutions for the stochastic Chen–Lee–Liu equation with sensitivity analysis. Mod. Phys. Lett. B, (2024), 2450376.
[7]  C.  Xu. Insights into COVID-19 stochastic modelling with effects of various transmission rates: Simulations with real statistical data from UK, Australia, Spain, and India. Physica Scripta 99(2), (2024), 025218.
[8] H. U. Rehman, A. U. Awan, S. M. Eldin, & I.  Iqbal. Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Math., 8(9), .  (2023), 21606-21621.
[9] H. U. Rehman, I. Iqbal, H. Zulfiqar, D. Gholami, H. Rezazadeh. "Stochastic soliton solutions of conformable nonlinear stochastic systems processed with multiplicative noise." Phys. Lett. A 486, (2023), 129100.
[10] N. Bruti-Liberati. "Numerical solution of stochastic differential equations with jumps in finance." Ph.D. diss. (2007).
[11] S. Sun, X. Zhang. "Asymptotic behavior of a stochastic delayed chemostat model with nutrient storage." J. Biol. Syst. 26(02), (2018), 225–246.
[12] W. W. Mohammed, C. Cesarano. "The soliton solutions for the (4+1)-dimensional stochastic Fokas equation." Math. Methods Appl. Sci. 46(6), (2023), 7589-7597.
[13] W. W. Mohammed, F. M. Al-Askar, C. Cesarano. "The analytical solutions of the stochastic mKdV equation via the mapping method." Mathematics 10(22), (2022), 4212.
[14] H. U. Rehman, N. Ullah, M. Imran. "Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method." Optik 226, (2021), 165378.
[15] H. U. Rehman, N. Ullah, M. Imran. "Highly dispersive optical solitons using Kudryashov's method." Optik 199, (2019), 163349.
[16] H. U. Rehman, M. S. Saleem, M. Zubair, S. Jafar, I. Latif. "Optical solitons with Biswas-Arshed model using mapping method." Optik 194, (2019), 163091.
[17] A. Kurt, A. Tozar, O. Tasbozan. "Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow waters." J. Ocean Univ. China 19, (2020), 772.
[18] P. N. Ryabov, D. I. Sinelshchikov, M. B. Kochanov. "Application of the Kudryashov method for finding exact solutions of the high-order nonlinear evolution equations." Appl. Math. Comput. 218(7), (2011), 3965-3972.
[19] D. Shi, H. U. Rehman, I. Iqbal, M. Vivas-Cortez, M. S. Saleem, X. Zhang. "Analytical study of the dynamics in the double-chain model of DNA." (2023).
[20] H. U. Rehman, A. U. Awan, E. M. Tag-ElDin, S. E. Alhazmi, M. F. Yassen, R. Haider. "Extended hyperbolic function method for the (2+1)-dimensional nonlinear soliton equation." Results Phys. 40, (2022), 105802.
[21] N. Ullah, M. I. Asjad, T. Muhammad, A. Akgul. "Analysis of power law non-linearity in solitonic solutions using extended hyperbolic function method." (2023).
[22] Z. Hong, H. Ji-Guang, W. Wei-Tao, A. Hong-Yong. "Applications of extended hyperbolic function method for quintic discrete nonlinear Schrödinger equation." Commun. Theor. Phys. 47(3), (2007), 474.
[23] H. U. Rehman, M. A. Imran, N. Ullah, A. Akgul. "Exact solutions of (2+1)-dimensional Schrödinger's hyperbolic equation using different techniques." Numer. Methods Partial Differ. Equations. (2023).
[24] G. Wang. “ A  new (3+1)-dimensional Schrodinger equation: derivation, soliton solutions and conservation laws”. Nonlinear Dyn. 104, (2021), 1595-1602
[25] M. Mirzazadeh; A. Biswas; Y. Yildirim & S. Saravana Veni. “Optical   bullets with cross-spatio dispersion and multiplicative white noise”. Journal of Optics. Submitted.
[26] H. U. Rehman, I. Iqbal, S. Subhi Aiadi, N. Mlaiki, M. S. Saleem. "Soliton solutions of Klein-Fock-Gordon equation using Sardar subequation method." Mathematics 10(18), (2022), 3377.
[27] Sadia Yasin · Asif Khan · Shabir   Ahmad · M. S. Osman.  New exact solutions of (3+1)-dimensional modified KdV -Zakharov-Kuznetsov equation by Sardar-subequation method. December 2023
[28] A. Refaie Ali, H. Or Roshid, S. Islam & A. Khatun. “Analyzing bifurcation, stability, and wave solutions in nonlinear telecommunications models using transmission lines, Hamiltonian and Jacobian techniques”. Scientific Reports. 14 (1), (2024), 15282.
[29] K. Hosseini, E. Hinal & M. Ilie. “Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrodinger equation”. Nonlinear Dynamics. 111 (18), (2024), 17455-17462.
[30] N. Taghizadeh, M. Mirzazadeh & F. Farahrooz. “Exact solutions of the nonlinear Schrodinger equation by the first integral method”. Journal of Mathematical Analysis and Applications. 374(2), (2011), 549-553.
[31] H.U. Rehman, I. Iqbal, M. Mirzazadeh, M.S. Hashemi, A.U. Awan & A.M. Hassan. “Optical solitons of new extended (3+1)-dimensional nonlinear Kudryashov’s equation via φ 6 -model expansion method”. Optical and Quantum Electronics. 56 (3), (2024), 279.