[1] Fathi Vajargah, B. (2013). Simulation and Monte Carlo Methods, First Edition, University of Guilan Press.
[2] Fathi Vajargah, K., & Eslami Mofidabadi, H. (2022). Comparison of Stochastic Sampling and Application in Financial Mathematics: Evidence from the European-Asian Option Markets. International Journal of Finance, Accounting and Economics Studies, 3(1), 2022, 35-44.
[3] Fathi Vajargah, K., & Shoghi, M. (2015). Simulation of stochastic differential equation of geometric Brownian motion by quasi-Monte Carlo method and its application in prediction of total index of stock market and value at risk. Mathematical Sciences, 9, 115-125.
[4] Fathi Vajargah, K., Eslami Mofid Abadi, H., & Abbasi, E. (2021). Oil Price estimating Under Dynamic Economic Models Using Markov Chain Monte Carlo Simulation Approach. Advances in Mathematical Finance and Applications, 6(3), 631-651.
[5] Mehrdoust, F., & Vajargah, K. F. (2012). A computational approach to financial option pricing using Quasi Monte Carlo methods via variance reduction techniques, 2, 195-198.
[6] Mehrdoust, F., Fathi, K., & Rahimi, A. A. (2013). Numerical simulation for multi-asset derivatives pricing under black-scholes model. Chiang Mai Journal of Science, 40, 725-735.
[7] Shariati, N., & Shahriari, H. (2014). Robust control chart for time series data. International Journal of Industrial Engineering, 25(1), 395-403.
[8] Su-Fen Yang, Yi-Ning Yu. (2009). “Using VSI EWMA charts to monitor dependent process steps with incorrect adjustment” Expert Systems with Applications 36 (2009) 442–454.
[9] Thalathi, A., & Bamni Moghaddam, M. (2010). Investigation of multivariate control chart with dual sampling for monitoring mean vector. Iranian Statistics Conference. SID.
[10] Vajargah, B. F., & Vajargah, K. F. (2006). Parallel Monte Carlo computations for solving SLAE with minimum communications. Applied mathematics and computation, 183(1), 1-9.
[11] Vajargah, B. F., & Vajargah, K. F. (2007). Monte Carlo method for finding the solution of Dirichlet partial differential equations. Applied Mathematical Sciences, 1(10), 453-462.
[12] Vajargah, K. F. (2013). Comparing ridge regression and principal components regression by monte carlo simulation basedon MSE. J. Comput. Sci. Comput. Math, 3, 25-29.
[13] Yang, S. F. (2010). Variable control scheme in the cascade processes. Expert Systems with Applications, 37(1), 787-798.
[14] Yang, S. F., & Chen, W. Y. (2011). Monitoring and diagnosing dependent process steps using VSI control charts. Journal of Statistical Planning and Inference, 141(5), 1808-1816.
[15] Yang, S. F., & Su, H. C. (2006). Controlling‐dependent process steps using variable sample size control charts. Applied Stochastic Models in Business and Industry, 22(5‐6), 503-517.
[16] Yang, S. F., & Su, H. C. (2007). Adaptive control schemes for two dependent process steps. Journal of Loss Prevention in the Process Industries, 20(1), 15-25.
[17] Yang, S. F., & Su, H. C. (2007). Adaptive sampling interval cause-selecting control charts. The International Journal of Advanced Manufacturing Technology, 31, 1169-1180.
[18] Yang, S. F., & Yu, Y. N. (2009). Using VSI EWMA charts to monitor dependent process steps with incorrect adjustment. Expert Systems with Applications, 36(1), 442-454.