Document Type : Original Article

Author

Faculty of mathematical sciences, University of guilan, Iran

Abstract

In the current paper, first we study the k−order variations on the k-Fibonacci universal code for k ≥ 4 (denoted by ) and get Table 3. Also in Tables 1 and 2, we obtain the k-Fibonacci representation and the k-Fibonacci code for k ≥ 4 and 1 ≤ n ≤ 50, respectively. Finally, we examine a new blocking algorithm using k−Fibonacci code and Gopala-Hemachandra code.

Keywords

[1] Apostolico, A., & Fraenkel, A. (2003). Robust transmission of unbounded strings using Fibonacci representations. IEEE Transactions on Information Theory, 33(2), 238-245.
[2] Basu, M., & Prasad, B. (2010). Long range variations on the Fibonacci universal code. Journal of Number Theory, 130(9), 1925-1931.
[3] Basu, M., & Prasad, B. (2011). Coding theory on the (m, t)-extension of the Fibonacci p-numbers. Discrete Mathematics, Algorithms and Applications, 3(02), 259-267.
[4] Daykin, D. E. (1960). Representation of natural numbers as sums of generalised Fibonacci numbers. Journal of the London Mathematical Society, 1(2), 143-160.
[5] Thomas, J. H. (2007). Variations on the Fibonacci universal code. arXiv preprint cs/0701085.
[6] Hashemi, M., & Mehraban, E. (2018). On the generalized order 2-Pell sequence of some classes of groups. Communications in Algebra, 46(9), 4104-4119.
[7] Mehraban, E., & Hashemi, M. (2023). Fibonacci length and the generalized order k-Pell sequences of the 2-generator p-groups of nilpotency class 2. Journal of Algebra and Its Applications, 22(03), 2350061.
[8] Hashemi, M., & Mehraban, E. (2021). Some New Codes on the k–Fibonacci Sequence. Mathematical Problems in Engineering.
[9] Pirzadeh, M., & Hashemi, M. (2022). A generalization of the n^ th-commutativity degree in finite groups. Computational Sciences and Engineering, 2(1), 33-40.
[10] Patel, V. R., & Shah, D. V. (2014). Generalized Fibonacci sequence and its properties. International Journal of Physics and Mathematical Science, 4(2), 118-124.
[11] Klein, S. T., & Ben-Nissan, M. K. (2010). On the usefulness of Fibonacci compression codes. The Computer Journal, 53(6), 701-716.
[12] Nalli, A., & Ozyilmaz, C. (2015). The third order variations on the Fibonacci universal code. Journal of Number Theory, 149, 15-32.
[13] Pearce, I. G. (2002). Indian mathematics: Redressing the balance. University of St. Andrews.
[14] Zeckendorf, É. (1972). Representations des nombres naturels par une somme de nombres de fibonacci on de nombres de lucas. Bulletin de La Society Royale des Sciences de Liege, 179-182.