[1] Kythe, P.K., Puri, P. (1992). Computational methods for linear integral equations, University of New Orleans, New Orleans.

[2] Wazwaz, A.M. (2006). A First Course in Integral Equations, World Scientific, River Edge, NJ, 1997.

[3] M. Dehghan, Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. Math. 83, 123-129.

[4] Forbes, L.K., Crozier, S. Doddrell, D.M. (1997). Calculating current densities and fields produced by shielded magnetic resonance imaging probes, SIAM J. Appl. Math. 57, 401-425.

[5] Saadatmandi, A. Dehghan, M. (2010). Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients, Computers and Mathematics with Applications, 59, 2996-3004.

[6] Biazar, J., Aminikhah, H., Eslami, M. (2009). He’s homotopy perturbation method for systems of integro-differential equations, Chaos, Solitons and Fractals, 39,1253-1258.

[7] Yildirim, A. (2008) . Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method, Computers and Mathematics with Applications, 56, 3175-3180.

[8] He, J.H. (1999). Homotopy perturbation technique, Computational Methods in Applied Mechanics and Engineering, 178, 257-262.

[9] Maleknejad, K., Mirzaee, F., Abbasbandy, S. (2005). Solving linear integro-differential equations system by using rationalized Haar function method, Applied Mathematics and Computation, 155, 317-328.

[10] Avudainayagam, A., Vani, C. (2000). Wavelet-Galerkin method for integro-differential equations, Applied Numerical Mathematics, 32, 247-254.

[11] Arikoglu, A., Ozkol, I. (2005). Solution of boundary value problems for integro-differential equations by using differential transform method, Applied Mathematics and Computation, 168, 1145-1158.

[12] Sweilam, N.H. (2007). Fourth order integro-differential equations using variational iteration method, Computers and Mathematics with Applications, 54, 1086-1091.

[13] He, J.H. (2007). Variational iteration method: New development and applications, Computers and Mathematics with Applications, 54, 881-894.

[14] Rashed, M. T. (2004). Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations, Applied Mathematics and computation, 151, 869-878.

[15] Yalcinbas, S., Sezer, M. (2000). The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 , 291-308.

[16] Dascioghlu, A. A., Sezer, M. (2005). Chebyshev polynomial solutions of systems of higher order linear Fredholm-Volterra integro-differential equations, Journal of the Franklin Institute, 342, 688-701.

[17] Kajani, M. T., Ghasemi, M., Babolian, E. (2006). Numerical solution of linear integro-differential equation by using sine-cosine wavelets, Applied Mathematics and Computation, 180, 569-574.

[18] Aminikhah, H., Salahi, M. (2010). A new analytical method for solving systems of Volterra integral equations, International Journal of Computer Mathematics, 87, 1142–1157.

[19] Aminikhah, H., Salahi, M. (2009). A New HPM for Integral Equations, Applications and Applied Mathematics: An International Journal, 4, 122-133.

[20] Vahidi, A. R., Babolian, E., Cordshooli, G. A., Azimzadeh, Z. (2009). Numerical solution of Fredholm integro-differential equation by Adomian decomposition method, Int. Journal of Math. Analysis, 36, 1769-1773.

[21] Hashim, I. (2006). Adomian decomposition method for solving BVPs for fourth-order integro-differential equations, Journal of Computational and Applied Mathematics, 193, 658-664.

[22] Ghorbani, A. (2009). Beyond Adomian polynomials: He polynomials. Chaos, Solitons & Fractals, 39, 1486-1492.