[1] Iijima, S., 1991, “Helical Microtubes of Graphitic Carbon,” Nature, 354, pp. 56-58.

[2] Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Klang, C. H., Bethune, D. S., and Heben, M. J., 1997, “Storage of Hydrogen in Single-Walled Carbon Nanotubes,” Nature, 386, pp. 377-379.

[3] Dalton, A. B., Collins, S., Muñoz, E., Razal, J. M., Ebron, V. H., Ferraris, J. P., Coleman, J. N., Kim, B. G., and Baughman, R. H., 2003, “Super-Tough Carbon-Nanotube Fibres,” Nature, 423, pp. 361-368.

[4] Postma, H. W. Ch., Teepen, T., Yao, Z., Grifoni, M., and Dekker, C., 2001, “Carbon Nanotube Single-Electron Transistors at Room Temperature,” Science, 293, pp. 76-79.

[5] Chen, P., Kim, H. S., Kwon, S. M., Yun, Y. S., and Jin, H. J., 2009, “Regenerated Bacterial Cellulose/Multi-Walled Carbon Nanotubes Composite Fibers Prepared by Wet-Spinning,” Curr. Appl. Phys., 9, pp. 96-99.

[6] Guldi, D. M., Rahman, G. M. A., Prato, M., Jux, N., Qin, S., and Ford, W., 2005, “Single-Wall Carbon Nanotubes as Integrative Building Blocks for Solar-Energy Conversion,” Angew. Chem., 117, pp. 2051-2054.

[7] Miaudet, P., Badaire, S., Maugey, M., Derré, A., Pichot, V., Launois, P., Poulin, P., and Zakri, C., 2005, “Hot-Drawing of Single and Multiwall Carbon Nanotube Fibers for High Toughness and Alignment,” Nano Lett., 5, pp. 2212-2215.

[8] Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., and Baughman, R. H., 2005, “Strong, Transparent, Multifunctional, Carbon Nanotube Sheets,” Science, 309, pp. 1215-1219.

[9] Nardelli, M. B., and Bernholc, J., 1999, “Mechanical Deformations and Coherent Transport in Carbon Nanotubes,” Phys. Rev. B, 60, pp. R16338-R16341.

[10] Falvo, M. R., Clary, G. J., Taylor, R. M., Chi, V., Brooks, F. P., Washburn, S., and Superfine, R., 1997, “Bending and Buckling of Carbon Nanotubes under Large Strain,” Nature, 389, pp. 582-584.

[11] Gurtin, M. E., and Murdoch, A. I., 1975, “A Continuum Theory of Elastic Material Surfaces,” Arch. Rat. Mech. Anal., 57, pp. 291-323.

[12] Gurtin, M. E., and Murdoch, A. I., 1978, “Surface Stress in Solids,” Int. J. Solids Struct., 14, pp. 431-440.

[13] Gibbs, J. W., 1906, “The Scientific Papers of J. Willard Gibbs”, Vol. 1. London, Longmans-Green.

[14] Sedighi, H. M., Keivani, M., and Abadyan, M., 2015, “Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect,” Compos. Part B: Eng., 83, pp. 117–133.

[15] Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R., and Rouhi, H., 2014, “Nonlinear Vibration Analysis of Timoshenko Nanobeams Based on Surface Stress Elasticity Theory,” Eur. J. Mech. A/Solids, 45, pp. 143-152.

[16] Rouhi, H., Ansari, R., and Darvizeh, M., 2016, “Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity,” Appl. Math. Model., 40, pp. 3128–3140.

[17] Rouhi, H., Ansari, R., Darvizeh, M., 2016, “Analytical treatment of the nonlinear free vibration of cylindrical nanoshells based on a first-order shear deformable continuum model including surface influences,” Acta Mech., DOI 10.1007/s00707-016-1595-4.

[18] Sedighi, H. M., and Bozorgmehri, A., 2016, “Nonlinear vibration and adhesion instability of Casimir-induced nonlocal nanowires with the consideration of surface energy,” J. Brazilian Soc. Mech. Sci. Eng., DOI: 10.1007/s40430-016-0530-x.

[19] Rouhi, H., Ansari, R., and Darvizeh, M., 2016, “Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect,” Int. J. Mech. Sci., 113, pp. 1–9.

[20] Tadi Beni, Y., Koochi, A., Kazemi, A. S., and Abadyan, M., 2012, “Modeling the influence of surface effect and molecular force on pull-in voltage of rotational nano–micro mirror using 2-DOF model,” Canadian J. Phys., 90, pp. 963-974.

[21] Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R., and Sahmani, S., 2014, “On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory,” Compos. Part B: Eng., 60, pp. 158–166.

[22] Eringen, A. C., 1983, “On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves,” J. Appl. Phys., 54, pp. 4703-4710.

[23] Eringen, A. C., 2002, Nonlocal Continuum Field Theories, Springer, New York.

[24] Yan, J. W., Tong, L. H., Li, C., Zhu, Y., and Wang, Z. W., 2015, “Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory,” Compos. Struct., 125, pp. 304–313.

[25] Zamani Nejad, M., Hadi, A., and Rastgoo, A., 2016, “Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory,” Int. J. Eng. Sci., 103, pp. 1–10.

[26] Ansari, R., Shahabodini, A., Rouhi, H., and Alipour, A., 2013, “Thermal buckling analysis of multi-walled carbon nanotubes through a nonlocal shell theory incorporating interatomic potentials,” J. Therm. Stresses, 36, pp. 56–70.

[27] Ghorbanpour Arani, A., and Kolahchi, R., 2014, “Exact solution for nonlocal axial buckling of linear carbon nanotube hetero-junctions,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 228, pp. 366-377.

[28] Rouhi, H., and Ansari, R., 2012, “Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions,” NANO, 7, 1250018.

[29] Ansari, R., Rouhi, H., and Mirnezhad, M., 2014, “A hybrid continuum and molecular mechanics model for the axial buckling of chiral single-walled carbon nanotubes,” Curr. Appl. Phys., 14, pp. 1360-1368.

[30] Farajpour, A., Hairi Yazdi, M. R., Rastgoo, A., Loghmani, M., and Mohammadi, M., 2016, “Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates,” Compos. Struct., 140, pp. 323–336.

[31] Ansari, R., Gholami, R., and Rouhi, H., 2015, “Size-Dependent Nonlinear Forced Vibration Analysis of Magneto-Electro-Thermo-Elastic Timoshenko Nanobeams Based upon the Nonlocal Elasticity Theory,” Compos. Struct., 126, pp. 216–226.

[32] Demir, Ç., and Civalek, Ö., 2013, “Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models,” Appl. Math. Model., 37, pp. 9355–9367.

[33] Ansari, R., Rouhi, H., and Sahmani, S., 2014, “Free Vibration analysis of single- and double-walled carbon nanotubes based on nonlocal elastic shell models,” J. Vib. Control, 20, pp. 670-678.

[34] Challamel, N., Picandet, V., Elishakoff, I., Wang, C. M., Collet, B., and Michelitsch, T., 2015, “On Nonlocal Computation of Eigenfrequencies of Beams Using Finite Difference and Finite Element Methods,” Int. J. Str. Stab. Dyn., 15, p. 1540008.

[35] Natsuki, T., Matsuyama, N., and Ni, Q., Q., 2015, “Vibration analysis of carbon nanotube-based resonator using nonlocal elasticity theory,” Appl. Phys. A, 120, pp. 1309-1313.

[36] Hummer, G., Rasaiah, J. C., and Noworyta, J. P., 2001, Water conduction through the hydrophobic channel of a carbon nanotube,” Nature, 414, pp. 188–190.

[37] Ansari, R., Mahmoudinezhad, E., Alipour, A., and Hosseinzadeh, M., 2013, “A comprehensive study on the encapsulation of methane in single-walled carbon nanotubes,” J. Comput. Theor. Nanosci., 10, pp. 2209-2215.

[38] Gao, Y., and Bando, Y., 2002, “Nanotechnology: carbon nanothermometer containing gallium,” Nature, 415, p. 599.

[39] Foldvari, M., and Bagonluri, M., 2008, “Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompat-ibility issues,” Nanomed. Nanotechnol. Biol. Med., 4, pp. 183–200.

[40] Zhang, J., and Meguid, S. A., 2016, “Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams,” Eur. J. Mech. A/Solids, 58, pp. 1–9.

[41] Ansari, R., Norouzzadeh, A., Gholami, R., Faghih Shojaei, M., and Hosseinzadeh, M., 2014, “Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment,” Physica E, 61, pp. 148–157.

[42] Hosseini, M., and Sadeghi-Goughari, M., 2016, “Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field,” Appl. Math. Model., 40, pp. 2560–2576.

[43] Ansari, R., Gholami, R., Norouzzadeh, A., and Darabi, M. A., 2015, “Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model,” Acta Mech. Sin., 31, pp. 708-719.

[44] Ansari, R., Norouzzadeh, A., Gholami, R., Faghih Shojaei, M., and Darabi, M. A., 2016, “Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects,” Microfluidics and Nanofluidics, 20, p. 28.

[45] Chang, T. P., 2011, “Thermal-Nonlocal Vibration and Instability of Single-Walled Carbon Nanotubes Conveying Fluid,” J. Mech., 27, pp. 567-573.

[46] Ansari, R., Faraji Oskouie, M., Sadeghi, F., and Bazdid-Vahdati, M., 2015, “Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory,” Physica E, 74, pp. 318-327.

[47] Faraji Oskouie, M., Ansari, R., and Rouhi, H., 2020, “Investigating vibrations of viscoelastic fluid-conveying carbon nanotubes resting on viscoelastic foundation using a nonlocal fractional Timoshenko beam model,” Proc. IMechE Part N: J. Nanomater. Nanoeng. Nanosys., DOI: 10.1177/2397791420931701.

[48] Ansari, R., Faraji Oskouie, M., and Gholami, R., 2016, “Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory,” Physica E, 75, pp. 266-271.

[49] Lakes, R. S., 2009, Viscoelastic Materials, Cambridge University Press.

[50] Paidoussis, M. P., 1998, Fluid–Structure Interaction, vol. 1, Academic Press, San Diego.

[51] Hartley, T. T., Lorenzo, C. F., and Killory Qammer, H., 1995, “Chaos in a fractional order Chua's system,” IEEE Trans. Circuits Sys. I: Fundamental Theor. Appl., 42, pp. 485-490.

[52] Shu, C., 2000, “Differential Quadrature and Its Application in Engineering,” Springer, London.

[53] Liu, F., Meerschaert, M. M., McGough, R. J., Zhuang, P., and Liu, Q, 2013, “Numerical methods for solving the multi-term time-fractional wave-diffusion equation,” Fract. Calculus Appl. Anal., 16, pp. 9-25.

[54] Zhuang, P., and Liu, F., 2007, “Finite difference approximation for two-dimensional time fractional diffusion equation,” J. Algor. Comput. Technol., 1, pp. 1-15.

[55] Ghavanloo, E., Daneshmand, F., and Rafiei, M., 2010, “Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation,” Physica E, 42, pp. 2218-2224.