[1] Stern R. H., Rasmussen, H. (1996). Left ventricular ejection: Model solution by collocation, an approximate analytical method. Comput Boil Med. 26, 255–61.
[2] Vaferi, B., Salimi, V. Baniani, D. D., Jahanmiri, A., Khedri, S. (2012). Prediction of transient pressure response in the petroleum reservoirs using orthogonal collocation. J Petrol Sci and Eng 98-99, 156-163.
[3] Hatami, M., Hasanpour, A., Ganji. D. D. (2013). Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Convers Manage 74, 9–16.
[4] Bouaziz, M. N. Aziz. A (2010). Simple and accurate solution for convective–radiative fin with temperature dependent thermal conductivity using double optimal linearization. Energy Convers Manage 51(2010), 76–82.
[5] Aziz, A., Bouaziz, M. N. (2011). A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers Manage 52; 2876–2882.
[6] Shaoqin, G., Huoyuan, D.(2008). Negative norm least-squares methods for the incompressible magneto-hydrodynamic equations. Act Math Sci. 28B(3), 675–84.
[7] Hatami, M., Nouri, R. Ganji, D. D. (2013). Forced convection analysis for MHD Al2O3–water nanofluid flow over a horizontal plate. J Mol Liq 187, 294–301.
[8] Hatami, M., Sheikholeslami, M., Ganji, D.D.(2014). Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol 253, 769–79.
[9] Hatami, M., Hatami, J. Ganji. D. D. (2014). Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput Methods Programs Biomed 113, :632–41.
[10] Hatami M., Ganji, D. D. (2013). Thermal performance of circular convective–radiative porous fins with different section shapes and materials. Energy Convers Manage 76, :185–93.
[11] Hatami M., Ganji, D. D. (2014). Heat transfer and nanofluid flow in suction and blowing process between parallel disks in presence of variable magnetic field. J Mol Liq 190, 159–68.
[12] Hatami M., Ganji, D. D. (2014). Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Studies Therm Eng 2(2014), 14–22.
[13] Hatami, M., DomairryG (2014). Transient vertically motion of a soluble particle in a Newtonian fluid media. Powder Technol 253, 481–485.
[14] Domairry, M. Hatami, M. (2014). Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method. J Mol Liq 193, 37–44.
[15] Ahmadi, A. R., A. M. Zahmtkesh, Hatami, M., Ganji, D. D. (2014). A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate. Powder Technol 258, 125–33
[16] Saedodin, S., Shahbabaei, M. (2013). Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM). Arabian Journal for Science and Engineering, 38, 2227{2231.
[17] Darvishi., M. T., Gorla R. S.R. Gorla, R. Aziz, A. (2015). Thermal performance of a porous radial fin with natural convection and radiative heat losses. Thermal Science, 19(2), 669-678.
[18] Moradi., A. Hayat, T., Alsaedi, A. (2014). Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management, 77(2014), 70{77.
[19] Ha,. H., Ganji, D. D. Abbasi, M. (2005). Determination of temperature distribution for porous fin with temperature-dependent heat generation by homotopy analysis method. Journal of Applied Mechanical Engineering, 4(1), 1-5
[20] Sobamowo, M. G., Adeleye, O. A., Yinusa, A. A.(2017). Analysis of convective-radiative porous fin with temperature-dependent internal heat generation and magnetic field using Homotopy Perturbation method. Journal of Computational and Applied Mechanics. 12(2), 127-145.
[21] He, J. H. (2006). Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350, 87-88.
[22] He, J. H. (2005). Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlin. Scne. Numer. Simul. 6 (2.2), 20-208.
[23] He, J. H. (2004). The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput. 151, 287{292.
[24] He, J. H. (2000). A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech. 35 (2.1), 115-123.
[25] He, J. H. (1999). Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257-262.
[26] He, J. H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73-79
[27] Mohyud-Din, S. T., Noor, M. A. (2007). Homotopy perturbation method for solving fourth-order boundary value problems, Math. Prob. Eng. 1-15, Article ID 98602,
[28] Noor, M. A. and Mohyud-Din, S. T. (2008). Homotopy perturbation method for solving sixth-order boundary value problems, Comput. Math. Appl. 55 (12) (2008), 2953-2972.
[29] Noor, M. A. and S. T. Mohyud-Din, S. T. (2008). Homotopy perturbation method for nonlinear higher-order boundary value problems, Int. J. Nonlin. Sci. Num. Simul. 9 (2.4), 395-408.
[30] Biazar, J., Azimi, F. (2008). He’s homotopy perturbation method for solving Helmoltz equation. Int. J. Contemp. Math. Sci. 3, 739-744.
[3Biazar, J., Ghazvini (2009). Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal., Real World Appl. 10, 2633-2640.
[32] Sweilam, N. H. Khader, M. M. (2009). Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method. Comput. Math. Appl. 58, 2134-2141.
[33] Biazar, J., Ghazvini, H. (2008). Homotopy perturbation method for solving hyperbolic partial differential equations. Comput. Math. Appl. 56, 453-458.
[34] Junfeng, L. (2009). An analytical approach to the Sine-Gordon equation using the modified homotopy perturbation method. Comput. Math. Appl. 58, 2313-2319.
[35] Corliss, G., Chang, Y. F. (1982). Solving ordinary differential equations using Taylor series, ACM Trans. Math. Software 8 (2) (1982) 114–144.
[36] Chang, Y. -F., Corliss, G. (1994). ATOMFT: solving ODEs and DAEs using Taylor series, Comput. Math. Appl. 28 (10-12), 209–233.
[37] Pryce J. D. (1998). Solving high-index DAEs by Taylor series, Numer. Algorithms 19 (1–4), 195–211.
[38] Barrio, R. (2005). Performance of the Taylor series method for ODEs/DAEs, Appl. Math. Comput. 163 (2), 525–545.
[39] Nedialkov, N. S., Pryce, J. D. (2005). Solving differential-algebraic equations by Taylor series. I. Computing Taylor coefficients, BIT 45 (3), 561–591.
[40] Nedialkov, N. S., Pryce, J. D. (2007). Solving differential-algebraic equations by Taylor series. II. Computing the system Jacobian, BIT 47 (1), 121–135.
[41] Nedialkov, N. S., Pryce, J. D. (2008). Solving differential algebraic equations by Taylor series. III. The DAETS code, J. Numer. Anal. Ind. Appl. Math. 3 (1-2), 61–80.
[42] Jorba, Á., Zou., M. (2005). A software package for the numerical integration of ODEs by means of high-order Taylor methods, Exp. Math. 14 (1), 99–117.
[43] Makino, K., Berz, M. (2003). Taylor models and other validated functional inclusion methods, Int. J. Pure Appl. Math. 6 (3) (2003) 239–316.
[44] Barrio, R. (2005). Performance of the Taylor series method for ODEs/DAEs. Appl. Math. Comput. 163, 525-545.
[45] Ren, Y, Zhang, B., Qiao, H. (1999). A simple Taylor-series expansion method for a class of second kind integral equations. Journal of Computational and Applied Mathematics. 110(1), 15 15-24.
[46] Abbasbandy S. and Bervillier, C. (2011). Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Appl. Math. Comput. 218 (2011) 2178.
[47] Kanwal, R. P. and Liu, K. C. (1989). A Taylor expansion approach for solving integral equations, Int. J. Math. Ed. Sci. Technol 20 (1989) 411-414.
[48] Huang, L., Li, X. F. Zhao, Y. Duan. X. Y. (2011). Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math. Appl. 62, 1127-1134.
[49] Nedialkov, N. S. and Pryce, J. D. (2007). Solving differential-algebraic equations by Taylor series (II): computing the system Jacobian, BIT Numer. Math. 47, 121-135.
[50] Goldfine, A. (1977). Taylor series methods for the solution of Volterra integral and integro-differential equations, Math. Comput. 31, 691-708.
[51] Zhou, J. K. (1986). Differential transformation and its applications for electrical circuits, in Chinese, Huarjung University Press, Wuuhahn, China.
[52] Jang, M. J. and Chen, C. L. (1997). Analysis of the response of a strongly nonlinear damped system using a differential transformation technique, Appl. Math. Comput. 88, 137-151.
[53] Chen, C. -L., Liu, Y. -C (1998). Differential transformation technique for steady nonlinear heat conduction problems, Appl. Math. Comput. 95, 155-164.
[54] Yu, L. -T. and Chen, C. -K. (1998). The solution of the Blasius equation by the differential transformation method, Math. Comput. Model. 28, 101-111.
[55] Chen, C. -K. and Chen, S. S. (2004). Application of the differential transformation method to a non-linear conservative system, Appl. Math. Comput. 154 (2004), 431-441.
[56] I. H. A.-H. Hassan. (2004). Differential transformation technique for solving higher-order initial value problems, Appl. Math. Comput. 154, 299-311.
[57] Yaghoobi, H. and Torabi. M. (2011). The application of differential transformation method to nonlinear equations arising in heat transfer, Int. Commun. Heat Mass 38, 815-820.
[58] Jang, M. J., Chen, C.-L, and Y.-C. Liu, Y.-C. (2001). Two-dimensional differential transform for partial differential equations. Appl. Math. Comput. 121, 261-270.
[59] Jang, M.-J., Chen, C. -L. Liy. Y.-C. (2000). On solving the initial-value problems using the differential transformation method, Appl. Math. Comput. 115, 145-160.
[60] Rashidi, M. M. (2009). The modified differential transform method for solving MHD boundary-layer equations, Comput. Phys. Commun. 180, 2210-2217.
[61] Erfani, E., Rashidi, M. M., Parsa, A. B. (2010). The modified differential transform method for solving off-centered stagnation flow toward a rotating disc, Int. J. Comput. Meth. 7, 655-670.
[62] Gokdogan, A., Merdan, M., Yildirim, A. (2012). The modified algorithm for the differential transform method to solution of Genesio Systems. Comm Nonlinear Sci. 17, 45-51.
[63] Alomari, A. K. (2011). A new analytic solution for fractional chaotic dynamical systems using the differential transform method, Comput. Math. Appl. 61, 2528-2534.
[64] Arikoglu, A. and Ozkol, I. (2005). Solution of boundary value problems for integrodifferential equations by using differential transform method, Appl. Math. Comput. 168 (2005) 1145-1158.
[65] Ho, S. H., Chen, C. K. (1998). Analysis of general elastically end restrained nonuniform beams using differential transform, Appl. Math. Model. 22, 219-234.
[66] Chen, C. K., Ho, S. H. (1999). Solving partial differential equations by two-dimensional differential transform method, Appl. Math. Comput. 106, 171-179.
[67] Arikoglu, A. and Ozkol, I. (2006). Solution of difference equations by using differential transform method, Appl. Math. Comput. 174, 1216.
[68] Arikoglu, A. and Ozkol, I. (2006). Solution of differential-difference equations by using differential transform method, Appl. Math. Comput. 181, 153-162.