[1] Brandstaeter, S., Fuchs, S. L., Aydin, R. C., & Cyron, C. J. (2019). Mechanics of the stomach: A review of an emerging field of biomechanics. GAMM‐Mitteilungen, 42(3), e201900001.
[2] Bahill, T. (1981). Bioengineering--biomedical, Medical, and Clinical Engineering: Prentice Hall.
[3] Klejchova, M., Silva-Alvim, F. A., Blatt, M. R., & Alvim, J. C. (2021). Membrane voltage as a dynamic platform for spatio-temporal signalling, physiological and developmental regulation. Plant Physiology.
[4] Hanani, M., Farrugia, G., & Komuro, T. (2005). Intercellular coupling of interstitial cells of Cajal in the digestive tract. International Review of Cytology, 242, 249-282.
[5] Du, P., Calder, S., Angeli, T. R., Sathar, S., Paskaranandavadivel, N., O'Grady, G., & Cheng, L. K. (2018). Progress in mathematical modeling of gastrointestinal slow wave abnormalities. Frontiers in Physiology, 8, 1136.
[6] O’Grady, G., Gharibans, A. A., Du, P., & Huizinga, J. D. (2021). The gastric conduction system in health and disease: a translational review. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321(5), G527-G542.
[7] Costabal, F. S., Concha, F. A., Hurtado, D. E., & Kuhl, E. (2017). The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Computer methods in applied mechanics and engineering, 320, 352-368.
[8] Martynenko, A., & Zozulya, V. (2021). Mathematical modeling of the cardiac tissue. Mechanics of Advanced Materials and Structures, 1-17.
[9] Miller, R., Marlevi, D., Zhang, W., Hirschvogel, M., Hadjicharalambous, M., Capilnasiu, A., . . . Bonini, M. (2021). Modeling Biomechanics in the Healthy and Diseased Heart. In Modeling Biomaterials (pp. 141-239): Springer.
[10] Regazzoni, F., Salvador, M., Africa, P., Fedele, M., Dedè, L., & Quarteroni, A. (2022). A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of Computational Physics, 111083.
[11] Maier, B., & Schulte, M. (2022). Mesh generation and multi-scale simulation of a contracting muscle–tendon complex. Journal of Computational Science, 101559.
[12] Rodríguez, K. G. F., Garza, D. E. P., & Quiroz, G. (2021). Numerical Simulation of a Physiological Mathematical Model of Energy Consumption in a Sarcomere. Mexican Journal of Biomedical Engineering, 42(2), 104-118.
[13] Röhrle, O., Sprenger, M., & Schmitt, S. (2017). A two-muscle, continuum-mechanical forward simulation of the upper limb. Biomechanics and Modeling in Mechanobiology, 16(3), 743-762.
[14] Sanders, K. M., Kito, Y., Hwang, S. J., & Ward, S. M. (2016). Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology, 31(5), 316-326.
[15] Blanc, O. (2002). A computer model of human atrial arrhythmia (PhD thesis). Lausanne, Ecole Polytechnique (EPFL).
[16] Dikande, A. M. (2021). On a nonlinear electromechanical model of nerve. arXiv preprint arXiv:2102.10400.
[17] Corrias, A. (2009). Multi-scale Modelling of Gastric Electrophysiology.
[18] Corrias, A., & Buist, M. L. (2007). A quantitative model of gastric smooth muscle cellular activation. Annals of Biomedical Engineering, 35(9), 1595-1607.
[19] Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals: CRC press.
[20] Tabatabai, F., Arshi, A., Mahmoudian, M., & Janahmadi, M. (2005). Spatiotemporal wavefront propagation in 3D geometric excitable heart tissue. Iranian Journal of Mechanical Engineering, 6(1), 38-59.
[21] HajHosseini, P., & Takalloozadeh, M. (2019). An Isotropic Hyperelastic Model of Esophagus Tissue Layers along with three-dimensional Simulation of Esophageal Peristaltic Behavior. Journal of Bioengineering Research, 1(2), 12-27.
[22] Liu, D., & Yan, G. (2017). A Multi-Layer Finite Element Model Based on Anisotropic Hyperelastic Fiber Reinforcements within Intestinal Walls. Nano Biomedicine and Engineering, 9, 291-297.
[23] Arrieta, J., Cartwright, J. H., Gouillart, E., Piro, N., Piro, O., & Tuval, I. (2015). Geometric mixing, peristalsis, and the geometric phase of the stomach. PloS One, 10(7), e0130735.
[24] Skamniotis, C., Edwards, C. H., Bakalis, S., Frost, G., & Charalambides, M. (2020). Eulerian-Lagrangian finite element modelling of food flow-fracture in the stomach to engineer digestion. Innovative Food Science & Emerging Technologies, 66, 102510.
[25] Du, P., O'Grady, G., Gao, J., Sathar, S., & Cheng, L. K. (2013). Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(4), 481-493.
[26] He, X. (2018). Modeling Of The Interaction Between Colon And Colonoscope During A Colonoscopy.
[27] Patel, B., Guo, X., Noblet, J., Chambers, S., Gregersen, H., & Kassab, G. S. (2020). computational analysis of mechanical stress in colonic diverticulosis. Scientific Reports, 10(1), 1-12.
[28] Irimia, A., & Bradshaw, L. A. (2003). Theoretical ellipsoidal model of gastric electrical control activity propagation. Physical Review E, 68(5), 051905.
[29] Panda, S. K., & Buist, M. L. (2020). A viscoelastic framework for inflation testing of gastrointestinal tissue. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103569.
[30] Panda, S. K., & Buist, M. L. (2021). An active finite viscoelastic model for gastric smooth muscle contraction. bioRxiv, 2021.2001.2026.428273.
[31] Poh, Y. C., Corrias, A., Cheng, N., & Buist, M. L. (2012). A quantitative model of human jejunal smooth muscle cell electrophysiology. PloS One, 7(8), e42385.
[32] Taghadosi, H., Ghomsheh, F. T., Dabanloo, N. J., & Farajidavar, A. (2021). Electrophysiological modeling of the effect of potassium channel blockers on the distribution of stimulation wave in the human gastric wall cells. Journal of Biomechanics, 127, 110662.
[33] Yeoh, J. W., Corrias, A., & Buist, M. L. (2017). Modelling human colonic smooth muscle cell electrophysiology. Cellular and Molecular Bioengineering, 10(2), 186-197.
[34] Farajidavar, A. (2018). Bioelectronics for mapping gut activity. Brain Research, 1693, 169-173.
[35] Farajidavar, A., O'Grady, G., Rao, S. M., Cheng, L. K., Abell, T., & Chiao, J. (2012). A miniature bidirectional telemetry system for in vivo gastric slow wave recordings. Physiological Measurement, 33(6), N29.
[36] Javan-Khoshkholgh, A., Alrofati, W., Naidu-Naidugari, S., Sassoon, J., Gharibani, P., Chen, J., & Farajidavar, A. (2019). System and methodology to study and stimulate gastric electrical activity in small freely behaving animals. Bioelectronics in Medicine, 2(3), 127-138.
[37] Javan-Khoshkholgh, A., & Farajidavar, A. (2021). Simultaneous Wireless Power and Data Transfer: Methods to Design Robust Medical Implants for Gastrointestinal Tract. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology.
[38] Hille, B. (2001). Ionic channels of excitable membranes, Sinauer Assoc. Inc., Sunderland, MA.
[39] Alexander, S. P., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., . . . Pawson, A. J. (2019). The concise guide to pharmacology 2019/20: Ion channels. British Journal of Pharmacology, 176, S142-S228.
[40] Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2000). Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circulation Research, 86(3), 302-311.
[41] Saffitz, J. E., Green, K. G., Kraft, W. J., Schechtman, K. B., & Yamada, K. A. (2000). Effects of diminished expression of connexin43 on gap junction number and size in ventricular myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 278(5), H1662-H1670.
[42] Uzzaman, M., Honjo, H., Takagishi, Y., Emdad, L., Magee, A. I., Severs, N. J., & Kodama, I. (2000). Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circulation Research, 86(8), 871-878.
[43] Jongsma, H. J., & Wilders, R. (2000). Gap junctions in cardiovascular disease. Circulation Research, 86(12), 1193-1197.
[44] Hall, J. E. (2016). Guyton and Hall Textbook of Medical Physiology, Jordanian Edition E-Book: Elsevier.
[45] Street, A. M., & Plonsey, R. (1999). Propagation in cardiac tissue adjacent to connective tissue: two-dimensional modeling studies. IEEE Transactions on Biomedical Engineering, 46(1), 19-25.
[46] Zhang, H., Holden, A., Kodama, I., Honjo, H., Lei, M., Varghese, T., & Boyett, M. (2000). Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology, 279(1), H397-H421.
[47] Harrild, D. M., & Henriquez, C. S. (2000). A computer model of normal conduction in the human atria. Circulation Research, 87(7), e25-e36.
[48] Ward, S. M., Dixon, R. E., De Faoite, A., & Sanders, K. M. (2004). Voltage‐dependent calcium entry underlies propagation of slow waves in canine gastric antrum. The Journal of physiology, 561(3), 793-810.
[49] Corrias, A., & Buist, M. L. (2008). Quantitative cellular description of gastric slow wave activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294(4), G989-G995.
[50] O'Grady, G., Du, P., Cheng, L. K., Egbuji, J. U., Lammers, W. J., Windsor, J. A., & Pullan, A. J. (2010). Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(3), G585-G592.
[51] Tabatabai, G., Arshi, A., Mahmoudian, M., & Janahmadi, M. (2004). New Combined Electrochemical Path Modeling of the Heart Based Membrane Ionic Channels. Iranian Journal of Biomedical Engineering, 1, 77-92.
[52] Taghadosi, H., Tabatabai Ghomsheh, F., Jafarnia Dabanloo, N., & Farajidavar, A. (2021). A minimal electrophysiological model of gastric smooth muscle cell based on effective ionic currents. Journal of Modeling in Engineering, 19(67).
[53] Tomalka, A., Borsdorf, M., Böl, M., & Siebert, T. (2017). Porcine stomach smooth muscle force depends on history-effects. Frontiers in Physiology, 8, 802.
[54] Dede, L., Quarteroni, A., & Regazzoni, F. (2021). Mathematical and numerical models for the cardiac electromechanical function. Rendiconti Lincei-Matematica e Applicazioni, 32(2), 233-272.
[55] Marwan, S. H., & Todo, M. (2021). Biomechanical Analysis of Left Ventricle Considering Myocardial Infarction and Regenerative Therapy Using Dynamic Finite Element Method. Journal of Biotechnology and Biomedicine, 4(2), 10-25.
[56] Zingaro, A., Fumagalli, I., Dede, L., Fedele, M., Africa, P. C., Corno, A. F., & Quarteroni, A. (2022). A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete & Continuous Dynamical Systems-S.