Document Type : Original Article

Authors

1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

3 Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, New York, USA.

4 Department of Occupational Therapy, Semnan University of Medical Science, Semnan, Iran.

Abstract

Electromechanical and regular contractions of the smooth muscles of the gastric wall are responsible for grinding, mixing, and propulsion food into the intestines. Lack of proper functioning in contracting the smooth muscle causes digestive disorders. This study aimed to present an electromechanical model for the contraction of smooth muscles of the human gastric wall in the physiological state. In this model, the electromechanical contraction of the smooth muscles is due to the distribution of the electrophysiological slow wave (Due to ionic interaction of cells with extracellular environment and adjacent cells) over 240 cells and 548 links. The results showed that the contraction started at the beginning of the gastric wall and gradually transferred to the end of the wall (pylorus). Also, it was found that the maximum contraction of about 34.7% occurs at the end of the model and near the pyloric sphincter. Finally, the behavior of tissues can be simulated non-invasively using the modeling and their function can be examined under physiological and pathological conditions.

Keywords

[1] Brandstaeter, S., Fuchs, S. L., Aydin, R. C., & Cyron, C. J. (2019). Mechanics of the stomach: A review of an emerging field of biomechanics. GAMM‐Mitteilungen, 42(3), e201900001.
[2] Bahill, T. (1981). Bioengineering--biomedical, Medical, and Clinical Engineering: Prentice Hall.
[3] Klejchova, M., Silva-Alvim, F. A., Blatt, M. R., & Alvim, J. C. (2021). Membrane voltage as a dynamic platform for spatio-temporal signalling, physiological and developmental regulation. Plant Physiology.
[4] Hanani, M., Farrugia, G., & Komuro, T. (2005). Intercellular coupling of interstitial cells of Cajal in the digestive tract. International Review of Cytology, 242, 249-282.
[5] Du, P., Calder, S., Angeli, T. R., Sathar, S., Paskaranandavadivel, N., O'Grady, G., & Cheng, L. K. (2018). Progress in mathematical modeling of gastrointestinal slow wave abnormalities. Frontiers in Physiology, 8, 1136.
[6] O’Grady, G., Gharibans, A. A., Du, P., & Huizinga, J. D. (2021). The gastric conduction system in health and disease: a translational review. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321(5), G527-G542.
[7] Costabal, F. S., Concha, F. A., Hurtado, D. E., & Kuhl, E. (2017). The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Computer methods in applied mechanics and engineering, 320, 352-368.
[8] Martynenko, A., & Zozulya, V. (2021). Mathematical modeling of the cardiac tissue. Mechanics of Advanced Materials and Structures, 1-17.
[9] Miller, R., Marlevi, D., Zhang, W., Hirschvogel, M., Hadjicharalambous, M., Capilnasiu, A., . . . Bonini, M. (2021). Modeling Biomechanics in the Healthy and Diseased Heart. In Modeling Biomaterials (pp. 141-239): Springer.
[10] Regazzoni, F., Salvador, M., Africa, P., Fedele, M., Dedè, L., & Quarteroni, A. (2022). A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of Computational Physics, 111083.
[11] Maier, B., & Schulte, M. (2022). Mesh generation and multi-scale simulation of a contracting muscle–tendon complex. Journal of Computational Science, 101559.
[12] Rodríguez, K. G. F., Garza, D. E. P., & Quiroz, G. (2021). Numerical Simulation of a Physiological Mathematical Model of Energy Consumption in a Sarcomere. Mexican Journal of Biomedical Engineering, 42(2), 104-118.
[13] Röhrle, O., Sprenger, M., & Schmitt, S. (2017). A two-muscle, continuum-mechanical forward simulation of the upper limb. Biomechanics and Modeling in Mechanobiology, 16(3), 743-762.
[14] Sanders, K. M., Kito, Y., Hwang, S. J., & Ward, S. M. (2016). Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology, 31(5), 316-326.
[15] Blanc, O. (2002). A computer model of human atrial arrhythmia (PhD thesis). Lausanne, Ecole Polytechnique (EPFL).
[16] Dikande, A. M. (2021). On a nonlinear electromechanical model of nerve. arXiv preprint arXiv:2102.10400.
[17] Corrias, A. (2009). Multi-scale Modelling of Gastric Electrophysiology.
[18] Corrias, A., & Buist, M. L. (2007). A quantitative model of gastric smooth muscle cellular activation. Annals of Biomedical Engineering, 35(9), 1595-1607.
[19] Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals: CRC press.
[20] Tabatabai, F., Arshi, A., Mahmoudian, M., & Janahmadi, M. (2005). Spatiotemporal wavefront propagation in 3D geometric excitable heart tissue. Iranian Journal of Mechanical Engineering, 6(1), 38-59.
[21] HajHosseini, P., & Takalloozadeh, M. (2019). An Isotropic Hyperelastic Model of Esophagus Tissue Layers along with three-dimensional Simulation of Esophageal Peristaltic Behavior. Journal of Bioengineering Research, 1(2), 12-27.
[22] Liu, D., & Yan, G. (2017). A Multi-Layer Finite Element Model Based on Anisotropic Hyperelastic Fiber Reinforcements within Intestinal Walls. Nano Biomedicine and Engineering, 9, 291-297.
[23] Arrieta, J., Cartwright, J. H., Gouillart, E., Piro, N., Piro, O., & Tuval, I. (2015). Geometric mixing, peristalsis, and the geometric phase of the stomach. PloS One, 10(7), e0130735.
[24] Skamniotis, C., Edwards, C. H., Bakalis, S., Frost, G., & Charalambides, M. (2020). Eulerian-Lagrangian finite element modelling of food flow-fracture in the stomach to engineer digestion. Innovative Food Science & Emerging Technologies, 66, 102510.
[25] Du, P., O'Grady, G., Gao, J., Sathar, S., & Cheng, L. K. (2013). Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(4), 481-493.
[26] He, X. (2018). Modeling Of The Interaction Between Colon And Colonoscope During A Colonoscopy.
[27] Patel, B., Guo, X., Noblet, J., Chambers, S., Gregersen, H., & Kassab, G. S. (2020). computational analysis of mechanical stress in colonic diverticulosis. Scientific Reports, 10(1), 1-12.
[28] Irimia, A., & Bradshaw, L. A. (2003). Theoretical ellipsoidal model of gastric electrical control activity propagation. Physical Review E, 68(5), 051905.
[29] Panda, S. K., & Buist, M. L. (2020). A viscoelastic framework for inflation testing of gastrointestinal tissue. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103569.
[30] Panda, S. K., & Buist, M. L. (2021). An active finite viscoelastic model for gastric smooth muscle contraction. bioRxiv, 2021.2001.2026.428273.
[31] Poh, Y. C., Corrias, A., Cheng, N., & Buist, M. L. (2012). A quantitative model of human jejunal smooth muscle cell electrophysiology. PloS One, 7(8), e42385.
[32] Taghadosi, H., Ghomsheh, F. T., Dabanloo, N. J., & Farajidavar, A. (2021). Electrophysiological modeling of the effect of potassium channel blockers on the distribution of stimulation wave in the human gastric wall cells. Journal of Biomechanics, 127, 110662.
[33] Yeoh, J. W., Corrias, A., & Buist, M. L. (2017). Modelling human colonic smooth muscle cell electrophysiology. Cellular and Molecular Bioengineering, 10(2), 186-197.
[34] Farajidavar, A. (2018). Bioelectronics for mapping gut activity. Brain Research, 1693, 169-173.
[35] Farajidavar, A., O'Grady, G., Rao, S. M., Cheng, L. K., Abell, T., & Chiao, J. (2012). A miniature bidirectional telemetry system for in vivo gastric slow wave recordings. Physiological Measurement, 33(6), N29.
[36] Javan-Khoshkholgh, A., Alrofati, W., Naidu-Naidugari, S., Sassoon, J., Gharibani, P., Chen, J., & Farajidavar, A. (2019). System and methodology to study and stimulate gastric electrical activity in small freely behaving animals. Bioelectronics in Medicine, 2(3), 127-138.
[37] Javan-Khoshkholgh, A., & Farajidavar, A. (2021). Simultaneous Wireless Power and Data Transfer: Methods to Design Robust Medical Implants for Gastrointestinal Tract. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology.
[38] Hille, B. (2001). Ionic channels of excitable membranes, Sinauer Assoc. Inc., Sunderland, MA.
[39] Alexander, S. P., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., . . . Pawson, A. J. (2019). The concise guide to pharmacology 2019/20: Ion channels. British Journal of Pharmacology, 176, S142-S228.
[40] Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2000). Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circulation Research, 86(3), 302-311.
[41] Saffitz, J. E., Green, K. G., Kraft, W. J., Schechtman, K. B., & Yamada, K. A. (2000). Effects of diminished expression of connexin43 on gap junction number and size in ventricular myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 278(5), H1662-H1670.
[42] Uzzaman, M., Honjo, H., Takagishi, Y., Emdad, L., Magee, A. I., Severs, N. J., & Kodama, I. (2000). Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circulation Research, 86(8), 871-878.
[43] Jongsma, H. J., & Wilders, R. (2000). Gap junctions in cardiovascular disease. Circulation Research, 86(12), 1193-1197.
[44] Hall, J. E. (2016). Guyton and Hall Textbook of Medical Physiology, Jordanian Edition E-Book: Elsevier.
[45] Street, A. M., & Plonsey, R. (1999). Propagation in cardiac tissue adjacent to connective tissue: two-dimensional modeling studies. IEEE Transactions on Biomedical Engineering, 46(1), 19-25.
[46] Zhang, H., Holden, A., Kodama, I., Honjo, H., Lei, M., Varghese, T., & Boyett, M. (2000). Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology, 279(1), H397-H421.
[47] Harrild, D. M., & Henriquez, C. S. (2000). A computer model of normal conduction in the human atria. Circulation Research, 87(7), e25-e36.
[48] Ward, S. M., Dixon, R. E., De Faoite, A., & Sanders, K. M. (2004). Voltage‐dependent calcium entry underlies propagation of slow waves in canine gastric antrum. The Journal of physiology, 561(3), 793-810.
[49] Corrias, A., & Buist, M. L. (2008). Quantitative cellular description of gastric slow wave activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294(4), G989-G995.
[50] O'Grady, G., Du, P., Cheng, L. K., Egbuji, J. U., Lammers, W. J., Windsor, J. A., & Pullan, A. J. (2010). Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(3), G585-G592.
[51] Tabatabai, G., Arshi, A., Mahmoudian, M., & Janahmadi, M. (2004). New Combined Electrochemical Path Modeling of the Heart Based Membrane Ionic Channels. Iranian Journal of Biomedical Engineering, 1, 77-92.
[52] Taghadosi, H., Tabatabai Ghomsheh, F., Jafarnia Dabanloo, N., & Farajidavar, A. (2021). A minimal electrophysiological model of gastric smooth muscle cell based on effective ionic currents. Journal of Modeling in Engineering, 19(67).
[53] Tomalka, A., Borsdorf, M., Böl, M., & Siebert, T. (2017). Porcine stomach smooth muscle force depends on history-effects. Frontiers in Physiology, 8, 802.
[54] Dede, L., Quarteroni, A., & Regazzoni, F. (2021). Mathematical and numerical models for the cardiac electromechanical function. Rendiconti Lincei-Matematica e Applicazioni, 32(2), 233-272.
[55] Marwan, S. H., & Todo, M. (2021). Biomechanical Analysis of Left Ventricle Considering Myocardial Infarction and Regenerative Therapy Using Dynamic Finite Element Method. Journal of Biotechnology and Biomedicine, 4(2), 10-25.
[56] Zingaro, A., Fumagalli, I., Dede, L., Fedele, M., Africa, P. C., Corno, A. F., & Quarteroni, A. (2022). A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete & Continuous Dynamical Systems-S.