[1] Richard, L. M. (2004). Fractional calculus in bioengineering. Critical Reviews in Biomedical Engineering, 32.
[2] Benson, D. A., Meerschaert, M. M., & Revielle, J. (2013). Fractional calculus in hydrologic modeling: A numerical perspective. Advances in water resources, 51, 479-497.
[3] Arqub, O. A., El-Ajou, A., & Momani, S. (2015). Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. Journal of Computational Physics, 293, 385-399.
[4] Hajikarimi, P., & Moghadas Nejad F. (2021). Mechanical models of viscoelasticity, Applications of Viscoelasticity, Elsevier, 27-62.
[5] Kumar, D., Singh, J., & Baleanu, D. (2018). A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel. The European Physical Journal Plus, 133(2), 1-10.
[6] Sabermahani, S., Ordokhani, Y., & Yousefi, S. A. (2018). Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Computational and Applied Mathematics, 37(3), 3846-3868.
[7] Razzaghi, M. (2016). The numerical solution of the Bagley–Torvik equation with fractional Taylor method. Journal of Computational and Nonlinear Dynamics, 11, 051010-1.
[8] Vargas, A. M. (2022). Finite difference method for solving fractional differential equations at irregular meshes. Mathematics and Computers in Simulation, 193, 204-216.
[9] Tural-Polat, S. N., & Dincel, A. T. (2022). Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind. Alexandria Engineering Journal, 61(7), 5145-5153.
[10] Pirmohabbati, P., Sheikhani, A. R., Najafi, H. S., & Ziabari, A. A. (2019). Numerical solution of fractional mathieu equations by using block-pulse wavelets. Journal of Ocean Engineering and Science, 4(4), 299-307.
[11] Rand, R. H. (2012). Lecture notes on nonlinear vibrations.
[12] Najafi, H. S., Mirshafaei, S. R., & Toroqi, E. A. (2012). An approximate solution of the Mathieu fractional equation by using the generalized differential transform method (GDTM). Applications and Applied Mathematics: An International Journal (AAM), 7(1), 24.
[13] Deb, A., Dasgupta, A., & Sarkar, G. (2006). A new set of orthogonal functions and its application to the analysis of dynamic systems. Journal of the Franklin Institute, 343(1), 1-26.
[14] Babolian, E., Mokhtari, R., & Salmani, M. (2007). Using direct method for solving variational problems via triangular orthogonal functions. Applied mathematics and computation, 191(1), 206-217.
[15] Babolian, E., Masouri, Z., & HATAMZADEH, V. S. (2009). A direct method for numerically solving integral equations system using orthogonal triangular functions.
[16] Babolian, E., Masouri, Z., & Hatamzadeh-Varmazyar, S. (2009). Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular functions. Computers & Mathematics with applications, 58(2), 239-247.
[17] Han, Z. Y., Li, S. R., & Cao, Q. L. (2012). Triangular orthogonal functions for nonlinear constrained optimal control problems. Research Journal of Applied Sciences, Engineering and Technology, 4(12), 1822-1827.
[18] Babolian, E., Maleknejad, K., Roodaki, M., & Almasieh, H. (2010). Two-dimensional triangular functions and their applications to nonlinear 2D Volterra-Fredholm integral equations. Computers & Mathematics with Applications, 60(6), 1711-1722.
[19] Kenneth S.. Miller, & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. Wiley.
[20] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent—II. Geophysical Journal International, 13(5), 529-539.
[21] Hatamzadeh-Varmazyar, S., & Masouri, Z. (2019). Numerical solution of second kind Volterra and Fredholm integral equations based on a direct method via triangular functions. International Journal of Industrial Mathematics, 11(2), 79-87.