[1] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[2] K.S. Miller, B. Ross, An introduction to the fractional calculus and Fractional differential equations , Wiley, New York, (1993).
[3] R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis of vis- coelastically damped structures, AIAA Journal 23 (1985) 918–925.
[4] E. Keshavarz, Y. Ordokhani, M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model. 38 (2014) 6038-6051.
[5] G. Arfken, Mathematical methods for physicists, Third eddition, Academic Press, San Dieqo, (1985)
[6] J.E. Kreyszig, Introductory Fractional Analysis with Applications, John Wiley and Sons Press, New York, (1978).
[7] S. Yuzbasi, Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Comput. Appl. Math. 219 (2013) 6328-6343.
[8] H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, C.M. Khalique, Application of Leg- endre wavelets for solving fractional differential equations, Comput. Math. Appl. 62 (2011) 1038-1045
[9] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model. 37 (7) (2013) 5498-5510.
[10] R.T. Baillie, Fractional integration in econometrics, Journal of Econometrics, 73 (1996) 5-59.
[11] F. Mainardi, Fractional calculus”some basic problems in continuum and statistical mechanics”. in: Carpinteri Aand Mainardi F (eds) Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, New York, (1997).
[12] Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50 (1997) 15-67.
[13] T.S. Chew, Fractional dynamic of interfaces between soft-nanoparticales and rough substrates, Physics Letters A, 342 (50) (2005) 148-155.
[14] L. Gaul, P. Klein, S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal. Pr, 5 (1991) 81-88.
[15] L. Suarez, A. Shokooh, An eigenvector erpansion method for the solution of motion containing fractional derivatives , J. Appl. Mech, 64 (1999) 629-735.
[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Application, Academic press. New York (1998).
[17] S. Momani, K. AlKhaled, Numerical solutions for systems of Fractional Differential Equations by the decomposition method, Appl. Math. Comput, 162 (3) (2005) 1351-1365.
[18] M. Meerschaert, C. Tadjeran, Finite difference approximations for two- sided spacefractional partial differential equations, Appl. Numer. Math, 56 (1) (2006) 80-90.
[19] Z. Odibat, N. Shawaghfeh, Generalized Taylor’s formula, Appl. Math. Comput, 186 (1) (2007) 286-293.
[20] A. Arikoglu, I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fract, 40(2) (2009) 521-529.
[21] I. Hashim,O .Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun, Nonlinear Sci. Numer. Simul, 14 (3) (2009) 674-684.
[22] M. Razzaghi, G. Elnagar, Linear quadratic optional control problems via shifted Legendre state parametrization, Nonlinear Int. J. Sci, 25 (1994) 393-399.
[23] H. Marzban, M. Razzaghi, Hybrid Fractions Approach for Linearly constrained Quadratic Optimal Control problems, Appl. Math. Model, 27 (2003) 393-399.
[24] M. Razzaghi, M. Razzaghi, Instabilities in the solution of heat condition problem usind Taylor series and alternative approaches, J. Frankl. Inst, 326 (1989) 683-690.
[25] Hejazi, S.R., Habibi, N., Dastranj,E., Lashkarian, E. (2020), “Numerical approximations for time-fractional Fokker-Planck-Kolmogorov equation of geometric Brownian motion”, Journal of Interdisciplinary Mathematics, Vol(23), pp.1387-1403.
[26] B. F. Spencer Jr. and L. A. Bergman, On the numerical solution of the Fokker-Planck equation for nonlinear stochastic system, Nonlinear Dynamics, 4, 357–372, (1993).
[27] C. Floris, "Numeric Solution of the Fokker-Planck-Kolmogorov Equation," Engineering, Vol. 5 No. 12, 2013, pp. 975-988.
[28] M. Zorzano, H. Mais, L. Vazquez, Numerical solution of two dimensional Fokker--Planck equations, Applied mathematics and computation, Vol. 98, No. 2-3, pp. 109-117, 1999.
[29] J. Bect, H. Baili, G. Fleury, Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets, in Proceeding of.
[30] P. Rahimkhani, Y. Ordokhani, E. Babolian, Fractional-Order Bernoulli Wavelets and their applications,Appl. Math. Model. 40 (2016) 8087-8107.