[1] R. Dusse and B. S Kaliski, A cryptographic library for the Motorola DSP 56000. Proc. Of Adv. Cryptol. EUROCRYPT’90. 73 (1990) 230–244.
[2] Egecioglu and C. K. Koc, Exponentiation using Canonical Recoding. Theoret. Comput.Sci. 129 (1994) 407–417.
[3] Daniel M.Gordon, A survey of fast exponentiation methods. Journal of algorithms. 27(1998) 129-146.
[4] C. Ha and S. J. Moon, A common-multiplicand method to the Montgomery algorithm for speeding up exponentiation. Inf. Process. Lett. 66 (1998) 105–107.
[5] Huang, K. Gaj and T. El-Ghazawi, New hardware architectures for Montgomery modular multiplication algorithm. IEEE Trans. Comput. 60 (2011) 923-936.
[6] S.-R. Kuang, J. P. Wang, K. C. Chang, and H. W. Hsu, Energy-efficient high-throughput Montgomery modular multipliers for RSA cryptosystems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(2013) 1999–2009.
[7] P.L. Montgomery, Modular multiplication without trial division. Math. Comput. 44 (1985) 519–521.
[8] Miyamoto, N. Homma, T. Aoki and A. Satoh, Systematic design of RSA processors based on high-radix Montgomery multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.19 (2011) 1136–1146.
[9] L.M. Mourelle and N. Nedjah, Fast reconfigurable hardware for the m-ary modular exponentiation. Proc. Euromicro Symp. on Digital System Design: Architectures, Methods and Tools . (2004) 516–523.
[10] Nedjah and L. M. Mourelle, Efficient hardware for modular exponentiation using the sliding-window method with variable-length partitioning. in Proc. 9th Int. Conf. Young Comput. Sci. (2008) 1980–1985.
[11] A.Rezai and P.Keshavarzi, A new CMM-NAF modular exponentiation algorithm by using a new modular multiplication algorithm. Trends in applied sciences research. 7(2012) 240-247.
[12] A.Rezai and P.Keshavarzi, Algorithm design and theorical analysis of a novel CMM modular exponentiation algorithm for large integers.RAIRO, Theor, Inf. appl. 49(2015) 255-268.
[13] Rezai and P. Keshavarzi, High-Throughput Modular Multiplication and Exponentiation Algorithm Using Multibit-Scan-Multibit-Shift technique. IEEE Trans. VLSI syst. 23(2015) 1710-1719.
[14] Rezai and P. Keshavarzi, Compact SD: A New Encoding Algorithm and Its Application in Multiplication. Int. j. comput. Math.94 (2017) 554-569.
[15] A.Rezai and P.Keshavarzi, high-performance scalable architecture for modular multiplication using a new digit-serial computation, Microelectronics journal. 55 (2016) 169-178.
[16] A.Rezai and P.Keshavarzi, High-perormance modular exponentiation algorithm by using a new modified modular multiplication algorithm and common-multiplicand multiplication method, 2011 World Congress on Internet Security (WorldCIS-2011), London.(2011) 192-197.
[17] D. Sutter, J. P. Deschamps and J. L. Imana, Modular multiplication and exponentiation architecture for fast RSA cryptosystem based on digit serial computation, IEEE Trans. Ind. Electron. 58 (2011) 3101-3109.
[18] S.Vollala, K.Geetha and N.Ramasubramanian, Efficient modular exponential algorithms compatible with hardware implementation of public-key cryptography. Security Comm. Networks. 9(2016) 3105–3115
[19] D. Walter, Systolic modular multiplication, IEEE Trans. Comput.42 (1993) 376-378.
[20] L. Wu, D. C. Lou and T. J. Chang, An Efficient Montgomery Exponentiation Algorithm for Public-key Cryptosystem. In Proc. of IEEE. Int. Conf. Intell. Security Inform., Taipei,Taiwan (2008) 284–285
[21] L. Wu, D. C. Lou and T. J. Chang, Fast modular multiplication based on complement representation and canonical recoding. Int. J. comput. Math. 87 (2010) 2871–2879
[22] C.L. Wu, An efficient common-multiplicand-multiplication method to the Montgomery algorithm for speeding up exponentiation. Inform. Sci. 179 (2009) 410-421.
[23] Wu, S. Li, and L. Liu, Fast, compact and symmetric modular exponentiation architecture by common-multiplicand Montgomery modular multiplications. Integr., VLSI J. 36(2013) 323–332.
[24] Xie, J. J. He and P. K. Meher, Low latency systolic Montgomery multiplier for finite field GF(2m) based on pentanomials, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 (2013) 385-389.