Document Type : Original Article

Authors

1 Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Medical Radiation Research Center, Central Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of Brain and Spinal Cord Injury Research Centre, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

5 Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran

6 Department of Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran

Abstract

The present analysis estimated the changes of temperature subsequent laser therapy on skin, subcutaneous adipose tissues and muscle, by COMSOL Multiphysics software. Different thickness of tissues were selected and irradiated by continuous mode of wavelengths of laser with Gaussian beam profile. A preliminary model of combining the optical and thermal characteristics of these tissues was designed. The simulations predict the thermal distribution of laser on tissues corresponding to different wavelengths and different beam doses. The results of the data analysis indicated that laser irradiation at different wavelengths can increase skin temperature 37 up to 39 degrees of centigrade in photobiomodulation technique. The enhancement of temperature showed insignificant impact on subcutaneous adipose tissues and was negligible on the deep tissues such as muscle. The estimations could be validated by experimental trials.

Keywords

[1] Mohammed, Y., & Verhey, J. F. (2005). A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online, 4(2), 1-16.
[2] Karu, T. I., & Afanas’eva, N. I. (1995). Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl Akad Nauk , 342(5), 693-695.
[3] Karu, T. I., & Kolyakov, S. F. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg, 23(4), 355-361.
[4] Huang, Y. Y., Sharma, S. K., Carroll, J., & Hamblin, M. R. (2011). Biphasic Dose Response in Low Level Light Therapy – An Update. Dose-Response, 9(4), 602–618.
[5] Passarella, S., Casamassima, E., Molinari, S., Pastore, D., Quagliariello, E., Catalano, I. M., & Cingolani, A. (1984). Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett, 175(1), 95-99.
[6] Borutaite, V., Budriunaite, A., & Brown, G. C. (2000). Reversal of nitric oxide-, peroxynitrite- and Snitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochimica ET biophysica acta, 1459(2-3), 405-412.
[7] Sutherland, J. C. (2002). Biological effects of polychromatic light. Photochem Photobiol, 76(2), 164-170.
[8] Lubart, R., Eichler, M., Lavi, R., Friedman, H., & Shainberg, A. (2005). Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg, 23(1), 3-9.
[9] Lane, N. (2006). Cell biology: power games. Nature, 443(7114), 901-903.
[10] Shiva, S., & Gladwin, M. T. (2009). Shining a light on tissue NO stores: near infrared release of NO from nitrite and nitrosylated hemes. J Mol Cell Cardiol, 46(1), 1-3.
[11] Lohr, N. L., Keszler, A., Pratt, P., Bienengraber, M., Warltier, D. C., & Hogg, N. (2009). Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection. J Mol Cell Cardiol, 47(2), 256–263.
[12] Zhang, R., Mio, Y., Pratt, P. F., Lohr, N., Warltier, D. C., Whelan, H. T., Zhu, D., Jacobs, E. R., Medhora, M., & Bienengraeber, M. (2009). Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol, 46(1), 4-1.
[13] Ball, K. A., Castello, P. R., Poyton, R. O. (2011). Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J Photochem Photobiol B, 102(3), 182-191.
[14] Poyton, R. O., & Ball, K. A. (2011). Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med, 11(57), 154-159.
[15] Hrnjak, M., Kuljic- kapulica, N., Budisin, A., & Giser, A. (1995). Stimulatory effect of low-power density He-Ne laser radiation on human fibroblast in vitro. Vojnosanit Pregl, 52(6), 539-546.
[16] Lim, H. M., Lew, K. K., & Tay, D. K. (1995). A clinical investigation of the efficacy of low-level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop, 108(6), 614-622.
[17] Yang, L., Wei, T., Lisheng, L., Junfeng, S., Ming, S., & Xiangzheng, C. (2020). Study on Heat Effect of High-Power Continuous Wave Laser on Steel Cylinder. Appl. Sci, 10(21), 7844.
[18] Kirmani, S. A. M., Velmanickam, L., Nawarathna, D., Sherif, S. S., & Jr, I. T. L. (2016). Simulation of Diffuse Optical Tomography Using COMSOL Multiphysics. Proc. COMSOL Conf. Bost.
[19] Marqa, M. F., Colin, P., Nevoux, P., Mordon, S., & Betrouni, N. (2010). Laser Interstitial Thermo Therapy (LITT) for Prostate Cancer Animal Model: Numerical Simulation of Temperature and Damage Distribution. Proc. COMSOL Conf. Paris.
[20] Rossi, F., Ratto, F., & Pini, R. (2012). Laser Activated Gold Nanorods for the Photothermal Treatment of Cancer. Proc. COMSOL Conf. Milan.
[21] Nour, M., Lakhssassi, A., Kengne, E., & Bougataya, M. (2015). 3D Simulation of the Laser Interstitial Thermal Therapy in Treatment (LITT) of Brain Tumors. Proc. COMSOL Conf. Bost.
[22] Manrique-Bedoya, S., Moreau, C., Patel, S., Feng, Y., & Mayer, K. (2019). Computational Modeling of Nanoparticle Heating for Treatment Planning of Plasmonic Photothermal Therapy in Pancreatic Cancer. Proc. COMSOL Conf. Bost.
[23] Neumann, E. E., Owings, T. M., Schimmoeller, T., Nagle, T. F., Colbrunn, R. W., Landis, B., Jelovsek, J. E., Wong, M., Ku, J. P., & Erdemir, A. (2018). Reference data on thickness and mechanics of tissue layers and anthropometry of musculoskeletal extremities. 5:180193 DOI: 10.1038/sdata.2018.193.
[24] Jacques, S. L. (2013). Optical properties of biological tissues: a review. Phys. Med. Biol, 58(11), 37–61.
[25] Cheong, W. F. (1995). Appendix to chapter 8: Summary of optical properties Optical-Thermal Response of Laser Irradiated Tissue. 1st edn ed A J Welch and M J C van Gemert (New York: Plenum)
[26] Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys, 38(15), 2543-2555.
[27] Bashkatov, A. N., Genina, E, A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm. Opt. Spectrosc, 99(5), 836-842.
[28] Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2011). Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci, 4(1), 9–38.
[29] Sandell, J. L., & Zhu, T. C. (2011). a review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics, 4(11-12), 773–787.
[30] Welch, A. J., & van Gemert, M. J. C. (2011). Overview of optical and thermal laser-tissue interaction and nomenclature Optical-Thermal Response of Laser-Irradiated Tissue. 2nd edn ed A J Welch and M J C van Gemert (Berlin: Springer) chapter 1 (DOI: 10.1007/978-90-481-8831-4).
[31] Yi, J., & Backman, V. (2012). Imaging a full set of optical scattering properties of biological tissues by inverse spectroscopic optical coherence tomography Opt. Lett, 37(21), 4443–4445.
[32] Dua, R., & Chakraborty, S. (2005). A novelmodeling and simulation technique of photo -thermal interactions between lasers and living biological tissues undergoing multiple changes in phase. Computers in biology and medicine, 35(5), 447–462.
[33] Hasgall, P. A., Di Gennaro, F., Baumgartner, C., Neufeld, E., Lioyd, B., Gosselin, M. C., Payne, D., Klingenbock, A., & Kuster, N. 2022 IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.1, Feb 22, 2022, DOI: 10.13099/VIP21000-04-1.
[34] Welch, A. J., Pearce, J. A., Diller, K, R., Yoon, G., & Cheong, W, F. (1989). Heat generation in laser irradiated tissue. Journal of biomechanical engineering, 111(1), 62–68.
[35] Hamblin, M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of Biophotonics, 9 (11–12), 1122–1124.
[36] Dewan, N., Kumar, A., & Attri, I. (2017). Optimization of laser parameters for studying the temperature profiles in the tissue. International Journal of Advanced Technology in Engineering and science, 5(1), 297-307.
[37] Jacques, S. L., & Prahl, S. A. (1987) Modeling optical and thermal distributions in tissue during laser irradiation. Lasers in surgery and medicine, 6(6), 494–503.
[38] Welch, A. J. (1985). Laser Irradiation of Tissue, In A. Shitzer and R. C. Eberhart (eds.), Heat Transfer in Medicine and Biology, pp. 135–184.
[39] Yoon, G. W. (1984). the thermal effect of laser beam scattering in biological medium. University of Texas at Austin.
[40] Brugmans, M. J., Kemper, J., Gijsbers, G. H., van der Meulen, F. W., & van Gemert, M. J. (1991). Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation. Lasers in surgery and medicine, 11(6), 587–594.
[41] Miserendino, L. J., Levy, G. C., & Rizoiu, I. M. (1995). Effects of Nd:YAG laser on the permeability of root canal wall dentin. Journal of Endodontics, 21(2), 83–87.
[42] Banerjee, A., Ogale, A. A., Das, C., Mitra, K., & Subramanian, C. (2005) Temperature Distribution in Different Materials Due to Short Pulse Laser Irradaition. Heat Transfer Engineering, 26(8), 41-49.