[1] Mohammed, Y., & Verhey, J. F. (2005). A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online, 4(2), 1-16.
[2] Karu, T. I., & Afanas’eva, N. I. (1995). Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl Akad Nauk , 342(5), 693-695.
[3] Karu, T. I., & Kolyakov, S. F. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg, 23(4), 355-361.
[4] Huang, Y. Y., Sharma, S. K., Carroll, J., & Hamblin, M. R. (2011). Biphasic Dose Response in Low Level Light Therapy – An Update. Dose-Response, 9(4), 602–618.
[5] Passarella, S., Casamassima, E., Molinari, S., Pastore, D., Quagliariello, E., Catalano, I. M., & Cingolani, A. (1984). Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett, 175(1), 95-99.
[6] Borutaite, V., Budriunaite, A., & Brown, G. C. (2000). Reversal of nitric oxide-, peroxynitrite- and Snitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochimica ET biophysica acta, 1459(2-3), 405-412.
[7] Sutherland, J. C. (2002). Biological effects of polychromatic light. Photochem Photobiol, 76(2), 164-170.
[8] Lubart, R., Eichler, M., Lavi, R., Friedman, H., & Shainberg, A. (2005). Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg, 23(1), 3-9.
[9] Lane, N. (2006). Cell biology: power games. Nature, 443(7114), 901-903.
[10] Shiva, S., & Gladwin, M. T. (2009). Shining a light on tissue NO stores: near infrared release of NO from nitrite and nitrosylated hemes. J Mol Cell Cardiol, 46(1), 1-3.
[11] Lohr, N. L., Keszler, A., Pratt, P., Bienengraber, M., Warltier, D. C., & Hogg, N. (2009). Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection. J Mol Cell Cardiol, 47(2), 256–263.
[12] Zhang, R., Mio, Y., Pratt, P. F., Lohr, N., Warltier, D. C., Whelan, H. T., Zhu, D., Jacobs, E. R., Medhora, M., & Bienengraeber, M. (2009). Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol, 46(1), 4-1.
[13] Ball, K. A., Castello, P. R., Poyton, R. O. (2011). Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J Photochem Photobiol B, 102(3), 182-191.
[14] Poyton, R. O., & Ball, K. A. (2011). Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med, 11(57), 154-159.
[15] Hrnjak, M., Kuljic- kapulica, N., Budisin, A., & Giser, A. (1995). Stimulatory effect of low-power density He-Ne laser radiation on human fibroblast in vitro. Vojnosanit Pregl, 52(6), 539-546.
[16] Lim, H. M., Lew, K. K., & Tay, D. K. (1995). A clinical investigation of the efficacy of low-level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop, 108(6), 614-622.
[17] Yang, L., Wei, T., Lisheng, L., Junfeng, S., Ming, S., & Xiangzheng, C. (2020). Study on Heat Effect of High-Power Continuous Wave Laser on Steel Cylinder. Appl. Sci, 10(21), 7844.
[18] Kirmani, S. A. M., Velmanickam, L., Nawarathna, D., Sherif, S. S., & Jr, I. T. L. (2016). Simulation of Diffuse Optical Tomography Using COMSOL Multiphysics. Proc. COMSOL Conf. Bost.
[19] Marqa, M. F., Colin, P., Nevoux, P., Mordon, S., & Betrouni, N. (2010). Laser Interstitial Thermo Therapy (LITT) for Prostate Cancer Animal Model: Numerical Simulation of Temperature and Damage Distribution. Proc. COMSOL Conf. Paris.
[20] Rossi, F., Ratto, F., & Pini, R. (2012). Laser Activated Gold Nanorods for the Photothermal Treatment of Cancer. Proc. COMSOL Conf. Milan.
[21] Nour, M., Lakhssassi, A., Kengne, E., & Bougataya, M. (2015). 3D Simulation of the Laser Interstitial Thermal Therapy in Treatment (LITT) of Brain Tumors. Proc. COMSOL Conf. Bost.
[22] Manrique-Bedoya, S., Moreau, C., Patel, S., Feng, Y., & Mayer, K. (2019). Computational Modeling of Nanoparticle Heating for Treatment Planning of Plasmonic Photothermal Therapy in Pancreatic Cancer. Proc. COMSOL Conf. Bost.
[23] Neumann, E. E., Owings, T. M., Schimmoeller, T., Nagle, T. F., Colbrunn, R. W., Landis, B., Jelovsek, J. E., Wong, M., Ku, J. P., & Erdemir, A. (2018). Reference data on thickness and mechanics of tissue layers and anthropometry of musculoskeletal extremities. 5:180193 DOI: 10.1038/sdata.2018.193.
[24] Jacques, S. L. (2013). Optical properties of biological tissues: a review. Phys. Med. Biol, 58(11), 37–61.
[25] Cheong, W. F. (1995). Appendix to chapter 8: Summary of optical properties Optical-Thermal Response of Laser Irradiated Tissue. 1st edn ed A J Welch and M J C van Gemert (New York: Plenum)
[26] Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D: Appl. Phys, 38(15), 2543-2555.
[27] Bashkatov, A. N., Genina, E, A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm. Opt. Spectrosc, 99(5), 836-842.
[28] Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2011). Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci, 4(1), 9–38.
[29] Sandell, J. L., & Zhu, T. C. (2011). a review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics, 4(11-12), 773–787.
[30] Welch, A. J., & van Gemert, M. J. C. (2011). Overview of optical and thermal laser-tissue interaction and nomenclature Optical-Thermal Response of Laser-Irradiated Tissue. 2nd edn ed A J Welch and M J C van Gemert (Berlin: Springer) chapter 1 (DOI: 10.1007/978-90-481-8831-4).
[31] Yi, J., & Backman, V. (2012). Imaging a full set of optical scattering properties of biological tissues by inverse spectroscopic optical coherence tomography Opt. Lett, 37(21), 4443–4445.
[32] Dua, R., & Chakraborty, S. (2005). A novelmodeling and simulation technique of photo -thermal interactions between lasers and living biological tissues undergoing multiple changes in phase. Computers in biology and medicine, 35(5), 447–462.
[33] Hasgall, P. A., Di Gennaro, F., Baumgartner, C., Neufeld, E., Lioyd, B., Gosselin, M. C., Payne, D., Klingenbock, A., & Kuster, N. 2022 IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.1, Feb 22, 2022, DOI: 10.13099/VIP21000-04-1.
[34] Welch, A. J., Pearce, J. A., Diller, K, R., Yoon, G., & Cheong, W, F. (1989). Heat generation in laser irradiated tissue. Journal of biomechanical engineering, 111(1), 62–68.
[35] Hamblin, M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of Biophotonics, 9 (11–12), 1122–1124.
[36] Dewan, N., Kumar, A., & Attri, I. (2017). Optimization of laser parameters for studying the temperature profiles in the tissue. International Journal of Advanced Technology in Engineering and science, 5(1), 297-307.
[37] Jacques, S. L., & Prahl, S. A. (1987) Modeling optical and thermal distributions in tissue during laser irradiation. Lasers in surgery and medicine, 6(6), 494–503.
[38] Welch, A. J. (1985). Laser Irradiation of Tissue, In A. Shitzer and R. C. Eberhart (eds.), Heat Transfer in Medicine and Biology, pp. 135–184.
[39] Yoon, G. W. (1984). the thermal effect of laser beam scattering in biological medium. University of Texas at Austin.
[40] Brugmans, M. J., Kemper, J., Gijsbers, G. H., van der Meulen, F. W., & van Gemert, M. J. (1991). Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation. Lasers in surgery and medicine, 11(6), 587–594.
[41] Miserendino, L. J., Levy, G. C., & Rizoiu, I. M. (1995). Effects of Nd:YAG laser on the permeability of root canal wall dentin. Journal of Endodontics, 21(2), 83–87.
[42] Banerjee, A., Ogale, A. A., Das, C., Mitra, K., & Subramanian, C. (2005) Temperature Distribution in Different Materials Due to Short Pulse Laser Irradaition. Heat Transfer Engineering, 26(8), 41-49.