[1] Mirzazadeh, M., Eslami, M., & Biswas, A. (2014). Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana J. Phys, 82, 465–476.
[2] Younis, M. (2013). The first integral method for time-space fractional differential equations. J. Adv. Phys. 2, 220–223.
[3] Taghizadeh, N., Najand Foumani, M., & Soltani Mohammadi, V. (2015). New exact solutions of the perturbed nonlinear fractional Schrӧdinger equation using two reliable methods. Appl. Appl. Math. 10, 139–148.
[4].Lu, B. (2012). The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395, 684–693.
[5] Güner, O., Bekir, A., & Cevikel, A.C. (2015). A variety of exact solutions for the time fractional Cahn–Allen equation. Eur. Phys. J. Plus, 130, 146–158.
[6] Guner, O., & Bekir, A. (2016). Bright and dark soliton solutions for some nonlinear fractional differential equations. Chinese Phys, B 25.
[7] Guner, O. (2015). Singular and non-topological soliton solutions for nonlinear fractional differential equations. Chinese Phys. B, 24.
[8] Korkmaz, A. (2017). Exact solutions of space-time fractional EW and modified EW equations. Chaos, Solitons & Fractals, 96, 132-138.
[9] Mirzazadeh, M., (2015). Topological and non-topological soliton solutions to some time-fractional differential equations. Pramana J. Phys. 85, 17–29.
[10] Guner, O., Aksoy, E., Bekir, A., & Cevikel, A. C. (2016). Different methods for (3+ 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation. Computers & Mathematics with Applications, 71(6), 1259-1269.
[11] Guner, O., Bekir, A., & Bilgil, H. (2015). A note on exp-function method combined with complex transform method applied to fractional differential equations. Advances in Nonlinear Analysis, 4(3), 201-208.
[12] Kudryashov, N. A. (2020). Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Applied Mathematics and Computation, 371, 124972.
[13] Kudryashov, N.A. (2020). Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrodinger equation. Optik, 206.
[14] Kudryashov, N.A. & Antonova, E.V. (2020). Solitary waves of equation for propagation pulse with power nonlinearities. Optik, 217.
[15] Matinfar, M., Eslami, M., & Kordy, M. (2015). The functional variable method for solving the fractional Korteweg–de Vries equations and the coupled Korteweg–de Vries equations. Pramana J. Phys. 85, 583–592.
[16] Liu, W., & Chen, K. (2013). The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana J. Phys. 81, 377–384.
[17] Akbari, M., & Taghizadeh, N. (2015). Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations. Caspian Journal of Mathematical Sciences (CJMS), 4(2), 215-225.
[18] Eslami, M., & Mirzazadeh, M. (2014). Exact solutions for fifth-order KdV-type equations with time-dependent coefficients using the Kudryashov method. Eur. Phys. J. Plus, 129, 192–197.
[19] Mirzazadeh, M., Eslami, M., Bhrawy, A. H., & Biswas, A. (2015). Biswas, Integration of complex-valued Klein–Gordon equation in -4 field theory. Rom. J. Phys. 60, 293–310.
[20] Kudryashov, N.A. (2012). One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul., 17, 2248–2253.
[21] Dehghan, M., Manafian, J., & Saadatmandi, A. (2011). Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Num. Meth. Heat, 21, 736–753.
[22] Dehghan, M., & Manafian, J. (2009). The solution of the variable coe_cients fourth-order parabolic partial differential equations by homotopy perturbation method. Z. Naturforsch. A, 64, 420–430.
[23] Manafian, J., & Heidari, S. (2019). Periodic and singular kink solutions of the Hamiltonian amplitude equation. Adv. Math. Mod. Appl., 4, 134–149.
[24] Manafian, J. (2018). Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations. Comput. Math. Appl., 76, 1246–1260.
[25] Manafian, J. (2021). An optimal galerkin-homotopy asymptotic method applied to the nonlinear second-orderbvps. Proc. Inst. Math. Mech., 47, 156–182.
[26] Manafian, J., (2020). N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid. Math. Meth. Appl. Sci., 43, 9904–9927.
[27] Barman, H. K., Ekramu Islam, Md. & AliAkbar, M., (2021). A study on the compatibility of the generalized Kudryashov method to determine wave solutions. Propulsion and Power Research, 10(1), 95-105.
[28] Hosseini, K., Sadri, K., Mirzazadeh, M. & Chuc, Y.M., Ahmadiande, A., Panserae, B.A., & Salahshour, S. (2021). A high-order nonlinear Schrödinger equation with the weak non-local nonlinearity and its optical solitons. Results in Physics, 23.
[29] Hossain, A. K. S., & Akbar, M. A. (2021). Traveling wave solutions of Benny Luke equation via the enhanced (G'/G)-expansion method. Ain Shams Engineering Journal, 12(4), 4181-4187.
[30] Sakovich, S. (2019). A new Painlevé-integrable equation possessing KdV-type solitons. arXiv preprint arXiv:1907.01324.
[31] Wazwaz, A. (2019). Two new painlev? Integrable extended Sakovich equations with (2þ1) and (3þ1) dimensions. International Journal of Numerical Methods for Heat and Fluid Flow, 30 (3), 1379-1387.
[32] Ozkan, Y., Yaser, E. (2020). Multiwave and interaction solutions and Lie symmetry analysis to a new (2 + 1)-dimensional Sakovich equation. Alexandria Engineering Journal, 59(6).