[1] Haron, N. Z., & Hamdioui, S. (2008, December). Why is CMOS scaling coming to an END?. In 2008 3rd international design and test workshop (pp. 98-103). IEEE.
[2] Kumari, A., Rani, S., & Singh, B. (2019). Parameterized comparison of nanotransistors based on CNT and GNR materials: effect of variation in gate oxide thickness and dielectric constant. Journal of Electronic Materials, 48, 3078-3085.
[3] Gangavarapu, P. Y., Lokesh, P. C., Bhat, K. N., & Naik, A. K. (2017). Graphene electrodes as barrier-free contacts for carbon nanotube field-effect transistors. IEEE Transactions on Electron Devices, 64(10), 4335-4339.
[4] Singh, A., Khosla, M., & Raj, B. (2015, October). Comparative analysis of carbon nanotube field effect transistors. In 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE) (pp. 552-555). IEEE.
[5] Tamersit, K. (2019). Performance assessment of a new radiation dosimeter based on carbon nanotube field-effect transistor: A quantum simulation study. IEEE Sensors Journal, 19(9), 3314-3321.
[6] Mahdi, M., Hossain, M. A., & Saha, J. K. (2018, December). Performance Analysis of an Empirical Model of Carbon Nanotube Field Effect Transistor. In 2018 International Conference on Innovation in Engineering and Technology (ICIET) (pp. 1-6). IEEE.
[7] Salah, A., Ossaimee, M., & Shaker, A. (2020). Impact of high-doped pockets on the performance of tunneling CNTFET. Superlattices and Microstructures, 145, 106622.
[8] Tamersit, K. (2019). Quantum simulation of a junctionless carbon nanotube field-effect transistor with binary metal alloy gate electrode. Superlattices and Microstructures, 128, 252-259.
[9] Kimbrough, J., Chance, S., Whitaker, B., Duncan, Z., Davis, K., Henderson, A., ... & Camino, F. (2018, August). Deposition and alignment of carbon nanotubes with dielectrophoresis for fabrication of carbon nanotube field-effect transistors. In 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (pp. 308-311). IEEE.
[10] Mehrad, M., & Zareiee, M. (2022). A Reliable LDMOS Transistor Based on GaN and Si3N4 Windows in Buried Oxide. Computational Sciences and Engineering, 2(2), 291-297.
[11] Anvarifard, M. K. (2022). Novel Drain Recessed Oxide SOI-MOSFET For Reduction of Short-Channel-Effects. Computational Sciences and Engineering, 2(2), 211-216.
[12] Hartmann, M., Hermann, S., Marsh, P. F., Rutherglen, C., Wang, D., Ding, L., ... & Schröter, M. (2021). CNTFET technology for RF applications: Review and future perspective. IEEE Journal of Microwaves, 1(1), 275-287.
[13] Gelao, G., Marani, R., & Perri, A. G. (2021). Analysis of Limits of CNTFET Devices through the Design of a Differential Amplifier. ECS Journal of Solid State Science and Technology, 10(6), 061009.
[14] Marani, R., & Perri, A. G. (2023). critical analysis of CNTFET-based electronic circuits design. ECS Journal of Solid State Science and Technology, 12(5), 051005.
[15] Paul, A., & Pradhan, B. (2024). Design of Ternary and Quaternary Asynchronous Up/Down Counter using CNTFET. AEU-International Journal of Electronics and Communications, 179, 155323.
[16] Ghodrati, M., Mir, A., & Naderi, A. (2021). Proposal of a doping-less tunneling carbon nanotube field-effect transistor. Materials Science and Engineering: B, 265, 115016.
[17] Ghodrati, M., Mir, A., & Naderi, A. (2020). New structure of tunneling carbon nanotube FET with electrical junction in part of drain region and step impurity distribution pattern. AEU-International Journal of Electronics and Communications, 117, 153102.
[18] Naderi, A., Ghodrati, M., & Baniardalani, S. (2020). The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor. Journal of Computational Electronics, 19, 283-290.
[19] Naderi, A., & Tahne, B. A. (2016). T-CNTFET with gate-drain overlap and two different gate metals: a novel structure with increased saturation current. ECS Journal of Solid State Science and Technology, 5(8), M3032.