[1] Abed, A. A., & Vermeer, P. A. (2006). Foundation analyses with unsaturated soil model for different suction profiles. In Numerical Methods in Geotechnical Engineering (pp. 547-554). CRC Press.
[2] Bloodworth, A. G., & Houlsby, G. T. (1999, July). Three dimensional analysis of building settlement caused by shaft construction. In Proceedings of an International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Tokyo.
[3] Bowles, J. E., & Guo, Y. (1996). Foundation analysis and design (Vol. 5, p. 127). New York: McGraw-hill.
[4] Das, B., & Sivakugan, N. (2007). Settlements of shallow foundations on granular soil—an overview. International journal of geotechnical engineering, 1(1), 19-29.
[5] Coduto, D. P. (2015). Foundation design: principles and practices. Pearson.
[6] Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage learning.
[7] Fang, H. Y. (2013). Foundation engineering handbook. Springer Science & Business Media.
[8] Wong, I. H., Ooi, I. K., & Broms, B. B. (1996). Performance of raft foundations for high-rise buildings on the Bouldery Clay in Singapore. Canadian geotechnical journal, 33(2), 219-236.
[9] Kay, J. N., & Cavagnaro, R. L. (1983). Settlement of raft foundations. Journal of Geotechnical Engineering, 109(11), 1367-1382.
[10] Johnson, K., Christensen, M., Sivakugan, N., & Karunasena, W. (2003, July). Simulating the response of shallow foundations using finite element modelling. In Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation, Townsville, QLD, Australia (pp. 2060-2065).
[11] Long, M. (2001). A case history of a deep basement in London Clay. Computers and geotechnics, 28(6-7), 397-423.
[12] Mayne, P. W., & Poulos, H. G. (1999). Approximate displacement influence factors for elastic shallow foundations. Journal of geotechnical and geoenvironmental engineering, 125(6), 453-460.
[13] Ismail, M. A., & Shahin, M. A. (2011). Finite element modeling of innovative shallow foundation system for reactive soils. GEOMATE Journal, 1(1), 78-82.
[14] Salahudeen, A. B., & Sadeeq, J. A. (2016). Evaluation of bearing capacity and settlement of foundations. Leonardo Electronic Journal of Practices and Technologies (LEJPT), 29, 93-114.
[15] Waheed, M. Q., & Asmael, N. M. (2018). Parametric study of shallow foundation bearing capacity in clayey soil. Int. J. Civ. Eng. Technol, 9(10), 1223-1230. International Journal of Civil Engineering and Technology (UCET), 2018, 9.10.
[16] Düzceer, R. (2009). Observed and predicted settlement of shallow foundation. In 2nd International conference on new developments in soil mechanics and geotechnical engineering (pp. 590-597).
[17] Kim, Y., Park, H., & Jeong, S. (2017). Settlement behavior of shallow foundations in unsaturated soils under rainfall. Sustainability, 9(8), 1417.
[18] Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage learning.
[19] Foye, K. C., Basu, P., & Prezzi, M. (2008). Immediate settlement of shallow foundations bearing on clay. International Journal of Geomechanics, 8(5), 300-310.
[20] Roberts, L. A., & Misra, A. (2010). LRFD of shallow foundations at the service limit state. Georisk, 4(1), 13-21.
[21] Nassiri, S., Savater, S., Arboleda-Monsalve, L., Chopra, M., & Jones, L. (2020, February). Factors influencing immediate settlements in Central Florida soils using conical load tests. In Geo-Congress 2020 (pp. 350-361). Reston, VA: American Society of Civil Engineers.
[22] Al-Dawoodi, B. A., Waheed, M. Q., & Rahil, F. H. (2021). Comparison between theoretical and experimental behavior of shallow foundation in cohesive soil. Engineering and Technology Journal, 39(12), 1911-1918.
[23] Hakro, M. R., Kumar, A., Ali, M., Habib, A. F., de Azevedo, A. R., Fediuk, R., ... & Awad, Y. A. (2022). Numerical analysis of shallow foundations with varying loading and soil conditions. Buildings, 12(5), 693.
[24] Al-Dawoodi, A. B., Rahil, F. H., & Waheed, M. Q. (2021, September). Numerical simulation of shallow foundation behavior rested on sandy soil. In IOP conference series: Earth and environmental science (Vol. 856, No. 1, p. 012042). IOP Publishing.
[25] Waheed, M., & Asmael, N. (2023). Study immediate and consolidation settlement of shallow foundations. Civ Environ Eng, 19, 318-327.
[26] Moghadasi, H., Eslami, A., Akbarimehr, D., & Afshar, D. (2024). Numerical investigation of adjacent construction considering induced instability. Transportation Infrastructure Geotechnology, 11(3), 1143-1167.
[27] Hosseini, M., Yaghoobi, B., Ranjbar, P. Z., Payan, M., & Chenari, R. J. (2023). Stability analysis of geosynthetic-reinforced shallow foundations with a lower-bound FELA approach adopting the nonassociated plastic flow rule. International Journal of Geomechanics, 23(2), 04022280.
[28] Keawsawasvong, S., Fathipour, H., Ranjbar, P. Z., Payan, M., & Jamsawang, P. (2024). Influence of soil fabric anisotropy on the bearing capacity of geosynthetic-reinforced foundations under eccentric and inclined loadings. Soils and Foundations, 64(3), 101479.
[29] Firouzeh, S. H., Shirmohammadi, S., Zanganeh Ranjbar, P., Payan, M., Jamsawang, P., & Keawsawasvong, S. (2024). Upper bound finite element limit analysis of the response of shallow foundations subjected to dip-slip reverse fault rupture outcrop. Transportation Infrastructure Geotechnology, 11(5), 3256-3292.
[30] Firouzeh, S. H., Shirmohammadi, S., Zanganeh Ranjbar, P., Payan, M., Jamsawang, P., & Keawsawasvong, S. (2024). Upper bound finite element limit analysis of the response of shallow foundations subjected to dip-slip reverse fault rupture outcrop. Transportation Infrastructure Geotechnology, 11(5), 3256-3292.
[31] Khorsandi, N., Zanganeh Ranjbar, P., & Neshaei, S. A. (2023). FEM Analysis of the Effect of Using Environmentally Friendly Synthetic Materials on Reducing Pore Pressure in the Core of Rubble Mound Breakwaters. Computational Sciences and Engineering, 3(1), 55-75.